9.4 Quicksorf 399

L

Foobbcos

5585808

Figure 9.14 An example of the first phase of parallel shellsort on an gight-process array.

‘f us. the complexity of this phase is ©((nlog p)/p). In the second phase, I odd and even

3

hases are performed, each requiring time ©(n/ p). Thus, the parallel run time of the

lécal sort first phase second phase

Tp=© (3 log f’—) +@ (E logp) + O (ﬂ). ©.7)
\p P p P -

- The performance of shellsort depends on the value of 1. If [is small, then the algorithm
- performs significantly better than odd-even transposition sort; if 1 1s ©®(p), then both algo-
rithms perform similarly. Problem 9.13 investigates the worst-case value of I.

| 9.4 Quicksort

All the algorithms presented s0 far have worse sequential complexity than that of the lower
bound for comparison-based sorting, ®(nlogn). This section examines the quicksort al-
gorithm, which has an average complexity of ®(n logn). Quicksort is one of the most
common sorting algorithms for sequential computers because of its simplicity, low over-
head, and optimal average complexity.

Quicksort is a divide-and-conquer algorithm that sorts a sequence by recursively di-
viding it into smaller subsequences. Assume that the n-element sequence to be sorted is
stored in the array A[L...n]. Quicksort consists of two steps: divide and conquer. During
the divide step, a sequence A[g .. .r] is partitioned (rearranged) into two nonempty sub-
sequences Alg ... s]and A[s +1... r] such that each element of the first subsequence is

400 Sorting

procedure QUICKSORT (A4, g,r)
begin
if g < r then
begin
x = Algl;
s i=q;
fori: =g+ 1tordo
if A[i] < x then
begin
s:=s5+1;
swap(Als], A[i]);
end if
swap(A[q], Als]);
QUICKSORT (4, g, 5);
QUICKSORT (A, s + 1, r);
end if
end QUICKSORT

Algorithm 9.5 The sequential quicksort algorithm.

smaller than or equal to each element of the second subsequence. During the conquer step,
the subsequences are sorted by recursively applying quicksort. Since the subsequences
Alg...s]and A[s 4 1...r] are sorted and the first subsequence has smaller elements than
the second, the entire sequence is sorted. ‘
How is the sequence A[g . . .] partitioned into two parts — one with all elements smaller
than the other? This is usually accomplished by selecting one element x from Afg...7]
and using this element to partition the sequence A[g...r] into two parts — one with el=
ements less than or equal to x and the other with elements greater than x. Element x
called the pivet. The quicksort algorithm is'presented in Algorithm 9.5. This algorithm:
arbitrarily chooses the first element of the sequence A[g . ..r] as the pivot. The operation
of quicksort is illustrated in Figure 9.15. ‘
The complexity of partitioning a sequence of size k is @ (k). Quicksort’s perform
is greatly affected by the way it partitions a sequence. Consider the case in which & .'
quence of size k is split poorly, into two subsequences of sizes 1 and k — 1. The run £
in this case is given by the recurrence relation T (n) = T(n — 1) + ®(n), whose solu 101
is T(n) = ®(n?). Alternatively, consider the case in which the sequence is split W 3
into two roughly equal-size subsequences of |k/2] and [k/2] elements. In this casé;
run time is given by the recurrence relation T(n) = 2T (n/2) + ®@(n), whose squ
is T(n) = ®(nlogn). The second split yields an optimal algorithm. Although qu ;
sort can have O (n%) worst-case complexity, its average complexity is significantly bette
the average number of compare-exchange operations needed by quicksort for s0
randomly-ordered input sequence is 1.4n log n, which is asymptotically optimal. Th

'

9.4 Quicksort 401

)

o BELGLLT]
S BB NN
o DECELE L s
, [EEGELE

o [1]2

Figure 9.15 Example of the quicksort algorfthm sorting a sequence of size n = 8.

(

(=

1 [s]e]s[7]s]

everal ways to select pivots. For example, the pivot can be the median of a small num-
ber of elements of the sequence, or it can be an element selected at random. Some pivot
selection strategies have advantages over others for certain input sequences.

' 9.4.1 Parallelizing Quicksort

Quicksort can be parallelized in a variety of ways. First, consider a naive parallel formu-
Jation that was also discussed briefly in Section 3.2.1 in the context of recursive decompo-
sition. Lines 14 and 15 of Algorithm 9.5 show that, during each call of QUICKSORT, the
array is partitioned into two parts and each part is solved recursively. Sorting the smaller
arrays represents two completely independent subproblems that can be solved in parallel.
Therefore, one way to parallelize quicksort is to execute it initially on a single process;
then, when the algorithm performs its recursive calls (lines 14 and 15), assign one of the
subproblems to another process. Now each of these processes sorts its array by using
quicksort and assigns one of its subproblems to other processes. The algorithm terminates
when the arrays cannot be further partitioned. Upon termination, each process holds an
element of the array, and the sorted order can be recovered by traversing the processes as
we will describe later. This parallel formulation of quicksort uses n processes to sort n ele-
ments. Its major drawback is that partitioning the array A[g ...r] into two smaller arrays,
Alg...s]and A[s + 1...r], is done by a single process. Since one process must partition
the original array A[1...n], the run time of this formulation is bounded below by Q(n).
This formulation is not cost-optimal, because its process-time product is £ (n?).

The main limitation of the previous parallel formulation is that it performs the parti-
tioning step serially. As we will see in subsequent formulations, performing partitioning
in parallel is essential in obtaining an efficient parallel quicksort. To see why, consider the
recurrence equation T'(r) = 2T (r/2) + ©(n), which gives the complexity of quicksort

for optimal pivot selection. The term @(n) is due to the partitioning of the array. Com-
pare this complexity with the ox'ferall complexity of the algorithm, ©(nlogn). From these

B

402 Sorting

two complexities, we can think of the quicksort algorithm as consisting of @ (log n) steps,
each requiring time ®(n) — that of splitting the array. Therefore, if the partitioning step
is performed in time @(1), using @ (n) processes, it is possible to obtain an overall par-
allel run time of ®(logn), which leads to a cost-optimal formulation. However, without
parallelizing the partitioning step, the best we can do (while maintaining cost-optimality)
is to use only @ (log n) processes to sort » elements in time ©(n) (Problem 9.14). Hence,
parallelizing the partitioning step has the potential to yield a significantly faster paralle]
formulation. ,

In the previous paragraph, we hinted that we could partition an array of size » into
two smaller arrays in time @(1) by using ®(n) processes. However, this is difficult for
most parallel computing models. The only known algorithms are for the abstract PRAM
models. Because of communication overhead, the partitioning step takes longer than e(1)
on realistic shared-address-space and message-passing parallel computers. In the followin g
sections we present three distinct parallel formulations: one for a CRCW PRAM, one for a
shaied—address-space architecture, and one for a message-passing platform. Fach of these
formulations parallelizes quicksort by performing the partitioning step in parallel.

9.4.2 Parallel Formulation for a CRCW PRAM

We will now present a parallel formulation of quicksort for sorting # elements on an n-
process arbitrary CRCW PRAM. Recall from Section 2.4.1 that an arbitrary CRCW PRAM
is a concurrent-read, concurrent-write parallel random-access machine in which write con-
flicts are resolved arbitrarily. In other words, when more than one process tries to write to
the same memory location, only one arbitrarily chosen process is allowed to write, and the
remaining writes are ignored. "

Executing quicksort can be visualized as constructing a binary tree. In this tree, the
pivot is the root; elements smaller than or equal to the pivot go to the left subtree, and
elements larger than the pivot go to the right subtree. Figure 9.16 illustrates the binary
tree constructed by the execution of the quicksort algorithm illustrated in Figure 9.15. The
sorted sequence can be obtained from this tree by performing an in-order traversal. The
PRAM formulation is based on this interpretation of quicksort,

The algorithm starts by selecting a pivot element and partitioning the array into two
parts — one with elements smaller than the pivot and the other with elements larger than the
pivot. Subsequent pivot elements, one for each new subarray, are then selected in parallel.
This formulation does not rearrange elements: instead, since all the processes can read
the pivot in constant time, they know which of the two subarrays (smaller or larger) the
elements assigned to them belong to. Thus, they can proceed to the next iteration.

The algorithm that constructs the binary tree is shown in Algorithm 946, The array
to be sorted is stored in A[l.. .n] and process i is assigned element A[i]. The arrays
leftchild[1 .. .n] and rightchild(1 . ..n) keep track of the children of a given pivot. For
each process, the local variable parent; stores the label of the process whose element is the

" pivot. Initially, all the processes write their process labels into the variable roof in line 5.

9.4 Quicksorf 403

Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each leve! of the
{ree represents gifferent array-partitioning iteration. If pivot selection is optimal, then the height of
the tree is © (log 1), which is also the number of itéfations.

| —

1. procedure BUILD.TREE (A[l...n]).
2 begin
3 for each process [do
4 begin
5. root := 1,
6. parent; "= root;
i leftchild(i] = rightchild(i] :==n + |
8 end for s
9. repeat for each process i # root do
10. begin
11 if (Ali] < Alparent;]) or .
(Alil= Alparent;] and i <parent;) then
12. begin
13. leftchild[parent;] := i;
14. ifi = leﬁchild[parenti] then exit
15. else parent; = leftchild] parent;];
16. end for
17. else
18. begin
19. rightchild[parenr;] e I
20. ifi = righrchild[parent,—] then exit
21. else parent; := rightchild[parent;];
22, end else
23, end repeat

24. end BUILD _TREE

Algorithm 9.6 The binary tree construction procedure for the CRCW PRAM parallel quicksort

formulation.

404 Sorting

I

Because the concurrent write operation is arbitrary, only one of these labels will actually
be written into root. The value A[root] is used as the first pivot and root is copied intg
parent; for each process i. Next, processes that have elements smaller than Alparent;)
write their process labels into lefichild[parent;], and those with larger elements write their
process label into rightchild[parent;]. Thus, all processes whose elements belong in the
smaller partition have written their labels into leftchild[parent;], and those with elements
in the larger partition have written their labels into rightchild[parent;]. Because of the
arbitrary concurrent-write operations, only two values — one for leﬁchild[paremi] and one
for rightchild[parent;] — are written into these locations. These two values become the
labels of the processes that hold the pivot elements for the next iteration, in which two
smaller arrays are being partitioned. The algorithm continues until pivot elements are
selected. A process exits when its element becomes a pivot. The construction of the binary
tree is illustrated in Figure 9.17. During each iteration of the algorithm, a level of the
tree is constructed in time @(1). Thus, the average complexity of the binary tree building
algorithm is ©(logn) as the average height of the tree is ® (log n) (Problem 9.16).

After building the binary tree, the algorithm determines the position of each element
in the sorted array. It traverses the tree and keeps a count of the number of elements in
the left and right subtrees of any element. Finally, each element is placed in its proper
position in time @(1), and the array is sorted. The algorithm that traverses the binary
tree and computes the position of each element is left as an exercise (Problem 9.15). The
average run time of this algorithm is ®(logn) on an n-process PRAM. Thus, its overall
process-time product is ® (n log n), which is cost-optimal.

9.4.3 Parallel Formulation for Practical Architectures

We now turn our attention to a more realistic parallel architecture — that of a P-process
system connected via an interconnection network. Initially, our discussion will focus on
developing an algorithm for a shared-address-space system and then we will show how this
algorithm can be adapted to message-passing systems.

- Shared-Address-Space Parallel Formulation

The quicksort formulation for a shared-address-space system works as follows. Let A be
an array of n elements that need to be sorted and p be the number of processes. Each
process is assigned a consecutive block of n/p elements, and the labels of the Pprocesses
define the global order of the sorted sequence. Let A; be the block of elements assigned to
process F;.

The algorithm starts by selecting a pivot element, which is broadcast to all processes.
Each process P;, upon receiving the pivot, rearranges its assigned block of elements into
two sub-blocks, one with elements smaller than the pivot S; and one with elements larger
than the pivot L;. This local rearrangement is done in place using the collapsing the loops
approach of quicksort. The next step of the algorithm is to rearrange the elements of the

% ¥

L B

Figure 9.17 The execution of the PRAM algorithm on the array shown in (a). The arrays leftchild
and rightchild are shown in (c), (d), and (g) as the algorithm progresses. Figure (f) shows the binary
tree constructed by the algorithm. Each node is labeled by the process (in square brackets), and
i the element is stored at that process (in curly brackets). The element is the pivot. In each node,

9.4 Quicksort 405
 §
1 23 456 7 8 i
1 23 456 7 8
33|2113(54(82(33|40|72
o ERbEEwD - 1
rightchild 5 (c)
(b) root =4
1 23 4 5 6 7 8 1 3456 78
lefichild | 2 18 a lefichild |2 |3 1]8
(d) rightchild | 6 5 rightchild 5 1 (e)
[4] {54}
2
3,46
®
[1] (33} [5] {82}
23(67
| [21 {21} [6] {33} (8] {72}
[3] {13} (7] (40}

processes with smaller elements than the pivot are grouped on the left side of the node, and those
with larger elements are grouped on the right side. These two groups form the two partitions of the

original array. For each partition, a pivot element is selected at random from the two groups that form
the children of the node.

E — ;'-—;::":;' K o - = o - T I = S o o -
T e - P }

406

Sorting

original array A so that all the elements that are smaller than the pivot (i.e., § = U; Si) are |
stored at the beginning of the array, and all the elements that are larger than the pivot (i.e.,
L = | J; L;) are stored at the end of the array.

Once this global rearrangement is done, then the algorithm proceeds to partition the
processes into two groups, and assign to the first group the task of sorting the smaller
elements S, and to the second group the task of sorting the larger elements L. Each of
these steps is performed by recursively calling the parallel quicksort algorithm. Note that
by simultaneously partitioning both the processes and the original array each group of
processes can proceed independently. The recursion ends when a particular sub-block of
elements is assigned to only a single process, in which case the process sorts the elements
using a serial quicksort algorithm.

The partitioning of processes into two groups is done according to the relative sizes of
the S and L blocks. In particular, the first [|S|p/n 4 0.5] processes are assigned to sort the
smaller elements S, and the rest of the processes are assigned to sort the larger elements L.
Note that the 0.5 term in the above formula is to ensure that the processes are assigned in
the most balanced fashion.

Example 9.1 Efficient parallel quicksort

Figure 9.18 illustrates this algorithm using an example of 20 integers and five pro-
cesses. In the first step, each process locally rearranges the four elements that it is
initially responsible for, around the pivot element (seven in this example), so that
the elements smaller or equal to the pivot are moved to the beginning of the locally
assigned portion of the array (and are shaded in the figure). Once this local rearrange-
ment is done, the processes perform a global rearrangement to obtain the third array
shown in the figure (how this is performed will be discussed shortly). In the second
step, the processes are partitioned into two groups. The first contains {Po, P1} and
is responsible for sorting the elements that are smaller than or equal to seven, and
the second group contains processes { Py, P3, P4} and is responsible for sorting the
elements that are greater than seven. Note that the sizes of these process groups were
created to match the relative size of the smaller than and larger than the pivot arrays.
Now, the steps of pivot selection, local, and global rearrangement are recursively re-
peated for each process group and sub-array, until a sub-array is assigned to a single
process, in which case it proceeds to sort it locally. Also note that these final local
sub-arrays will in general be of different size, as they depend on the elements that
were selected to act as pivots. L

In order to globally rearrange the elements of A into the smaller and larger sub-arrays we
need to know where each element of A will end up going at the end of that rearrangement.
One way of doing this rearrangement is illustrated at the bottom of Figure 9.19. In this
approach, § is obtained by concatenating the variousS; blocks over allfthe processes, it
increasing order of process label. Similarly, L is obtained by concatenating the various L;

]
9.4 Quicksort 407 ll
|
\
;

U I -
|7 [13]18[2 [17[1 [14]20] 6 [10]15[9| 3 [16]10] 4 [1t1]2] 5 [8] pivot selection ':
- pivot=7 I
g é
i % P ¢ A 1 B i P i P i
! H L‘Flels]l?}i][17|I4|2016|]0I15|9I3|4|19|16L5|12[11‘8-‘ il
I : rearrangement
f 1712163 4[5 [18[13[17]1a]20]10]15] o [19]16] :2[11] 8] f::;fj;:;lem
|
|
g S I &1 Py . Pt Py
E L7]2T1T6 3 4]s|1s]13]17] 1420 10[15] o [19[16]12[11] 8| pivot selection
i pivot=5 pivot=17
| g
f § : Py 5 P : P; : Py
f g Lil2]776[3[a]5]14[13[17]18]20[10]15] o [19]i6]12[11] 8 fj;‘;‘:jﬁ;ﬁ‘mm
3 .
Lil2]s[als[7]6[1a[13]17]r0]15] 0 Jr6]12[1] s [18]20]19] fjﬁﬂg\iﬁ}em
‘ Py Py Py Py Py
{ L12]3T4[5]7]6]14[13[17]10]15] o [16]12]11] 8 [18]2019] pivot selection
i pivot=11
I5) Fy Py Py : P3 Py
2 after local
E L1 [2]3]as]6]7[10]13]17]1a]1s] o T8 Trz[12]16]18]19]20] reammgemEn:
after global
:; 10] o [8 [12[11]13]17]14]15]16 N e
i
}
' oy Py P
i after local
£ 0] 9] 8 [12]u{13]17]14]15]16 g
£
Py Py Py Py Py
Li[2]3]a]s]6]7]8]o]10][u]12|13]1a]1s[16[17]18]19]20] Solution

Figure 9.18 An example of the execution of an efficient shared-address-space quicksort algorithm,
i

e

408

Sorting

B P,

: 0 1 Py Py Py
EBIEBHIEB pivot selection
pivot=7

after Iocal
rearrangement

after global

Tearrangement
o2 g3 14 15 16 17

18 19

Figure 9.19 Efficient global rearrangement of the array.

blocks in the Same order. As a result, for process F;, the

L will be stored gt location Z};{, [St] + 7, and the Jjthele
| Stored at location 5 — Zf;il ILg| = j.
These locationg can b i
Section 4.3. Two prefix-
and the other the sizes o

these prefix sums, respe

Jth element of itg Si sub-block
ment of its L; sub-block will be

prefix-sum operation described in
ving the sizes of the S; sub-blocks

f the 1; sub-blocks. Let Q and R be the arrays of size p that store

ctively. Their elements will be

Note that for each process P, 0
than-the-pivot element will be sto
its greater-than-the-pivot elements will b
mined, the overal] Tearrangement of 4 cap be easily performed b
A’ of size n. These steps are il

of prefix-sum is slightly different
value that is computed for location O;

of prefix-sum js sometimes referred to

Analysis The complexity of the shared—addregs-space formulation of the quicksort algo-
rithm depends on two things. The first is the amount of time it requires to split a particular
array into the smaller-than- and the greater-than-the-pivot sub-arrays, and the second is
the degree to which the various pivots being selected lead to balanced partitions. In this
section, to simplify our analysis, we will assume that pivot selection always results in bal-
anced partitions. However, the issue of proper pivot selection and its impact on the overall
parallel performance is addressed in Section 9.4.4.

Given an array of n elements and p processes, the shared-address-space formulation of
the quicksort algorithm needs to perform four steps: (i) determine and broadcast the pivot;
(ii) locally rearrange the array assigned to each process; (iii) determine the locations in the
globally rearranged array that the local elements will go to; and (iv) perform the global
rearrangement. The first step can be performed in time @ (log p) using an efficient recur-
sive doubling approach for shared-address-space broadcast. The second step can be done
in time @(n/p) using the traditional quicksort algorithm for splitting around a pivot ele-
ment. The third step can be done in @ (log p) using two prefix sum operations. Finally, the
fourth step can be done in at least time ®&(n/ p) as it requires us to copy the local elements
to their final destination. Thus, the overall complexity of splitting an n-element array is
@(n/p) + ©(log p). This process is repeated for each of the two subarrays recursively on
half the processes, until the array is split into p parts, at which point each process sorts the
elements of the array assigned to it using the serial quicksort algorithm. Thus, the overall
complexity of the parallel algorithm is:

local sort array splits

-

Tp=0 (E log f—) +0 (E logp) + O(log® p). (9.8)
P p P

The communication overhead in the above formulation is reflected in the © (log® p)’term,
which leads to an overall isoefficiency of ®(plog? p). It is interesting to note that the
overall scalability of the algorithm is determined by the amount of time required to perform
the pivot broadcast and the prefix sum operations.

Message-Passing Parallel Formulation

The quicksort formulation for message-passing systems follows the general structure of
the shared-address-space formulation. However, unlike the shared-address-space case in
which array A and the globally rearranged array A’ are stored in shared memory and can
be accessed by all the processes, these arrays are now explicitly distributed among the
processes. This makes the task of splitting A somewhat more involved.

In particular, in the message-passing version of the parallel quicksort, each process
stores n/p elements of array A. This array is also partitioned around a particular pivot
element using a two-phase approach. In the first phase (which is similar to the shared-
address-space formulation), the locally stored array A; at process P; is partitioned into the
smaller-than- and larger-than-the-pivot sub-arrays S; and L; locally. In the next phase, the

9.4 Quicksort 409+

e g e A, TR T WPy -

410

Sorting

algorithm first determines which processes will b
smaller-than-the-pivot sub-arrays (i.e., § =
for recursively sorting the larger-than-the

¢ responsible for recursively sorting the
\U; 8:) and which process will be responsible
-pivot sub-arrays (ie., [, — Ui Li). Once this is
done, then the processes send their §; and Z; arrays to the corresponding processes. After
that, the processes are partitioned into the two groups, one for § and one for I, and the
algorithm proceeds recursively. The recursion terminates when each sub-array is assigned
to a single process, at which point it is sorted locally.

The method used to determine which processes will be responsible for sorting § ang
L is identical to that for the shared-address-space formulation, which tries to partition the
processes to match the relative size of the two sub-arrays. Let pg and Pr, be the number
of processes assigned to sort § and L, respectively. Each one of the ps processes will end
up storing |S|/ps elements of the smaller-than-the-pivot sub-array, and each one of the PL

the larger-than-the-pivot sub-array. The
method used to determine where each process P; will send its S; and L; elements follows

-address-space formulation, That is, the various §;
(or L;) sub-arrays will be stored in consecutive locations in S (or L) based on the process
sible for these elements are determined by

-size segments, and can be computed using a
prefix-sum operation. Note that each process F; may need to split its S; (or L;) sub-arrays

into multiple segments and send each one to different processes. This can happen because
(or L) that span more than one process. In
general, each process may have to send its elements to two different processes; however,
there may be cases in which more than two partitions are required.

Analysis OQur analysis of the message-passing formulation of quicksort will mirror the
corresponding analysis of the shared-address-space formulation.

Consider a message-passing parallel computer with
bandwidth. The amount of time required to sp

casting the pivot element, @ (n/ p) for splittin

D processes and O(p) bisection
lit an array of size 7 is ©(log p) for broad-
g "the locally assigned portion of the array,
etermine the process partition sizes and the

i i sub-arrays, and the amount of time required for send-
ing and receiving the various arrays. This last step depends on how the processes are

mapped on the underlying architecture and on the maximum number of processes that
each process needs to communicate with. In general, this communication step involves
all-to-all personalized communication (because a particular process may end-up receiv-
ing elements from all other processes), whose complexity has a lower bound of @ (n/p).
Thus, the overall complexity for the split is O(n/p) + O(log p), which is asymptotically
similar to that of the shared-address-space formulation. As a result, the overall runtime is

also the same as in Equation 9.8, and the algorithm has a similar isoefficiency function of
®(plog? p).

9.4 Quicksort 411

&

P

9.4.4 Pivot Selection

In the parallel quicksort algorithm, we glossed over pivot selection. Pivot selection is
particularly difficult, and it significantly affects the algorithm’s performance. Consider the
case in which the first pivot happens to be the largest element in the sequence. In this
case, after the first split, one of the processes will be assigned only one element, and the
remaining p — 1 processes will be assigned n — 1 elements. Hence, we are faced with a
problem whose size has been reduced only by one element but only p — 1 processes will
participate in the sorting operation. Although this is a contrived example, it illustrates a
significant problem with parallelizing the quicksort algorithm. Ideally, the split should be
done such that each partition has a non-trivial fraction of the original array.)

One way to select pivots is to chqose them at random as follows. During the i split,
one process in each of the process groups randomly selects one of its elements to be the
pivot for this partition. This is analogous to the random pivot selection in the sequential
quicksort algorithm. Although this method seems to work for sequential quicksort, it is
not well suited to the parallel formulation. To see this, consider the case in which a bad
pivot is selected at some point. In sequential quicksort, this leads to a partitioning in which
one subsequence is significantly larger than the other. If all subsequent pivot selections
are good, one poor pivot will increase the overall work by at most an amount equal to
the length of the subsequence; thus, it will not significantly degrade the performance of
sequential quicksort. In the parallel formulation, however, one poor pivot may lead to a
partitioning in which a process becomes idle, and that will persist throughout the execution
of the algorithm.

If the initial distribution of elements in each process is uniform, then a betfer pivot
selection method can be derived. In this case, the n/p elements initially stored at each
process form a representative sample of all n elements. In other words, the median of each
n/ p-clement subsequence is very close to the median of the entire n-element sequence.
Why is this a good pivot selection scheme under the assumption of identical initial dis-
tributions? Since the distribution of elements on each process is the same as the overall
distribution of the n elements, the median selected to be the pivot during the first step is
a good approximation of the overall median. Since the selected pivot is very close to the
overall median, roughly half of the elements in each process are smaller and the other half
larger than the pivot. Therefore, the first split leads to two partitions, such that each of
them has roughly n/2 elements. Similarly, the elements assigned to each process of the
group that is responsible for sorting the smaller-than-the-pivot elements (and the group re-
sponsible for sorting the larger-than-the-pivot elements) have the same distribution as the
n/2 smaller (or larger) elements of the original list. Thus, the split not only maintains load
balance but also preserves the assumption of uniform element distribution in the process
group. Therefore, the application of the same pivot selection scheme to the sub-groups of
processes continues to yield good pivot selection.

Can we really assume that the n/ p elements in each process have the same distribution
as the overall sequence? The answer depends on the application. In some applications,

1

e

412 Sorfing

either the random or the median pivot selection scheme works well, but in others neither

scheme delivers good performance. Two additional pivot selection schemes are examined
in Problems 9.20 and 9.21.

9.5 Bucket and Sample Sort

A popular serial algorithm for sorting an array of n elements whose values are uniformly
distributed over an interval [a, #] is the bucket sort algorithm. In this algorithm, the interval
[a, b] is divided into m equal-sized subintervals referred to as buckets, and each element
is placed in the appropriate bucket. Since the n elements are uniformly distributed over
the interval [a, b], the number of elements in each bucket is roughly n /m. The algorithm
then sorts the elements in each bucket, yielding a sorted sequence. The run time of this
algorithm is ®(n log(n/m)). For m = ©(n), it exhibits linear run time, ®(n). Note that
the reason that bucket sort can achieve such a low complexity is because it assumes that
the n elements to be sorted are uniformly distributed over an interval [a, b].

Parallelizing bucket sort is straightforward. Let n be the number of elements to be
sorted and p be the number of processes. Initially, each process is assigned a block of n /p
elements, and the number of buckets is selected to be m = p. The parallel formulation of
bucket sort consists of three steps. In the first step, each process partitions its block of n /p
elements into p sub-blocks, one for each of the p buckets. This is possible because each
process knows the interval [a, b) and thus the interval for each bucket. In the second step,
each process sends sub-blocks to the appropriate processes. After this step, each process
has only the elements belonging to the bucket assigned to it. In the third step, each process
sorts its bucket internally by using an optimal sequential sorting algorithm.

Unfortunately, the assumption that the input elements are uniformly distributed over an
interval [a, b] is not realistic. In most cases, the actual input may not have such a distri-
bution or its distribution may be unknown. Thus using bucket sort may result in buckets
that have a significantly different number of elements, thereby degrading performance. In
such situations an algorithm called sample sort will yield significantly better performance.
The idea behind sample sort is simple. A sample of size s is selected from the n-element
sequence, and the range of the buckets is determined by sorting the sample and choosing

— 1 elements from the result. These elements (called splitters) divide the sample into m
equal-mzed buckets. After defining the buckets, the algorithm proceeds in the same way as
bucket sort. The performance of sample sort depends on the sample size s and the way 1t
is selected from the n-element sequence.

Consider a splitter selection scheme that guarantees that the number of elements ending
up in each bucket is roughly the same for all buckets. Let n be the number of elements
to be sorted and m be the number of buckets. The scheme works as follows. It divides
the 7 elements into m blocks of size n/m each, and sorts each block by aising quicksort.
From each sorted block it chooses m — 1 evenly spaced elements. The m (m — 1) elements
selected from all the blocks represent the sample used to determine the buckets. This

