TD2 : Récursivité

TD2: Récursivité

(1) Soit L le langage des mots de $(ab^*)^*$ dans lesquels la suite des longueurs des plages de b consécutifs est croissante. C'est à dire que tout facteur ab^ka est suivi par b^k . Le langage L est-il récursif? Récursivement énumérable?

- (2) La fonction $f: u_2 \# v_2 \mapsto w_2$ avec w = u + v est-elle calculable?
- (3) Soit \mathcal{M} une MT totale qui reconnaît un langage L. Donner une MT qui reconnaît le langage \overline{L} .
- (4) Soit L un langage récursif, donner une MT qui calcule la fonction

$$f: \left\{ \begin{array}{ll} u \in L & \mapsto & baba \\ u \notin L & \mapsto & abab \end{array} \right.$$

- (5) Soit $f_1: \Sigma_1^* \to \Sigma_2^*$ et $f_2: \Sigma_2^* \to \Sigma_3^*$ deux fonctions partielles calculables. Montrer que $f_2 \circ f_1$ est partielle calculable.
- (6) Soit L un ensemble d'entiers représentés en binaire. On note $L_0 = \{u0 : u \in \{0,1\}^*\} \cap L$ et $L_1 = \{u1 : u \in \{0,1\}^*\} \cap L$. Quels cas sont possibles parmi les 8 possibilités de ce tableau?

	$L_0 \text{ rec et}$ $L_1 \text{ rec}$	$\frac{L_0 \text{ rec et}}{L_1 \text{ rec}}$	$\overline{L_0 \; { m rec \; et}} \; { m et} \ L_1 \; { m rec}$	$\overline{L_0 \text{ rec}} ext{ et} \ \overline{L_1 \text{ rec}}$
$L \operatorname{rec}$				
$\overline{L \text{ rec}}$				

(7) Soit L un langage récursivement énumérable tel que $f: n \mapsto |\Sigma^n \cap L|$ est calculable. Montrer que L est récursif.

Soit $P = \{n \in \mathbb{N} : n \text{ est premier}\}\$ et $J = \{n \in \mathbb{N} : n \text{ et } n+2 \text{ sont premiers}\}.$

- (8) P et J sont-ils récursivement énumérables? Récursifs?
- (9) Le langage $P' = \{m \in \mathbb{N} : \exists n \in P, m \leq n\}$ est-il récursif?
- (10) Le langage $J' = \{m \in \mathbb{N} : \exists n \in J, m \leq n\}$ est-il récursif?