
SOM2IF15 – Compilation
How to Describe a Programming Language?

Frédéric Loulergue

2022

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 2 / 48

Levels of Description

Syntax: Which sentences are correct?
▶ Alphabet
▶ Lexical components: words or tokens
▶ The syntax defines the sequences of words that constitute valid sentences
▶ cf. Chapter “Syntactic Analysis” of this course

Semantics: What does a correct sentence mean?
▶ Usual description of the semantics: reference manual in English
▶ More precise description: formal semantics

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 48

Levels of Description

Syntax: Which sentences are correct?
▶ Alphabet
▶ Lexical components: words or tokens
▶ The syntax defines the sequences of words that constitute valid sentences
▶ cf. Chapter “Syntactic Analysis” of this course

Semantics: What does a correct sentence mean?
▶ Usual description of the semantics: reference manual in English
▶ More precise description: formal semantics

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 48

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 48

Why the Concept of Relation Is Important?
Syntax and Semantics
▶ Syntax can be defined as a unary relation on a set of sequences ofsymbols
▶ Operational semantics will be defined as n-ary relations

Implementation of Programming Languages
▶ If an operational semantics is a deterministic relation, it can beimplemented as a function
▶ Functional programming: interpreters by implementing operationalsemantics as functions

Logic Programming
▶ Prolog programs define in essence relations

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 48

Why the Concept of Relation Is Important?
Syntax and Semantics
▶ Syntax can be defined as a unary relation on a set of sequences ofsymbols
▶ Operational semantics will be defined as n-ary relations

Implementation of Programming Languages
▶ If an operational semantics is a deterministic relation, it can beimplemented as a function
▶ Functional programming: interpreters by implementing operationalsemantics as functions

Logic Programming
▶ Prolog programs define in essence relations

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 48

Why the Concept of Relation Is Important?
Syntax and Semantics
▶ Syntax can be defined as a unary relation on a set of sequences ofsymbols
▶ Operational semantics will be defined as n-ary relations

Implementation of Programming Languages
▶ If an operational semantics is a deterministic relation, it can beimplemented as a function
▶ Functional programming: interpreters by implementing operationalsemantics as functions

Logic Programming
▶ Prolog programs define in essence relations

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 48

How to Define Relations?
By Extension/Enumeration
▶ Example: A = { a, b, c , d }
+ easy
- not convenient if the number of tuples is large
- impossible if it is infinite

By Comprehension
▶ Example: { (a, f (a)) | a ∈ A}
+ concise
- something already defined is needed (here f)
- not usable to define a relation from scratch

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 48

How to Define Relations?
By Induction
▶ Base cases by enumeration
▶ Inductive cases: ways to build new tuples from existing ones

Natural Numbers
▶ O is a natural number
▶ if n is a natural then S(n) is a natural
▶ Examples:Decimal Peano

0 O
1 S(O)
2 S(S(O))
3 S(S(S(O))... ... Giuseppe Peano

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 7 / 48

Inductive Definition: An Example
Addition on Peano Numbers: Function

O +m = m for any natural number m (1)
S(n) +m = S(n +m) for any natural numbers n, m (2)

Let’s compute!
S(S(O)) + S(S(O)) = S(S(O) + S(S(O))) by case (2)

= S(S(O + S(S(O)))) by case (2)
= S(S(S(S(O)))) by case (1)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 8 / 48

Inductive Definition: An Example
Addition on Peano Numbers: Relation
Instead of + with 2 arguments and 1 result: add as a ternary relation
▶ 2 first elements of the tuple correspond to the 2 arguments of +
▶ the last element corresponds to the result of the addition

Relation add

▶ Base case: add(O, m, m) for any natural number mTo be understood as:
the sum of O andm ism

▶ Inductive case: for natural numbers n,m, r ,if add(n, m, r) then add(S(n), m, S(r))To be understood as:
if the sum of n andm is r then the sum of S(n) andm is S(r)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 9 / 48

Inductive Definition: An Example

Let’s prove that 2+2=4
1. By the base case:

add

(
O, S(S(O)), S(S(O))

)
2. By the inductive case and 1.:

add

(
S(O), S(S(O)), S(S(S(O)))

)
3. By the inductive case and 2.:

add

(
S(S(O)), S(S(O)), S(S(S(S(O))))

)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 10 / 48

Inference Systems
Inference System
▶ Convenient way to write inductive definitions
▶ Rule: j1 . . . jn

j
for n ≥ 0

▶ Terminology:
▶ j1, . . . , jn, j : judgments
▶ j1, . . . , jn: premises or hypotheses
▶ j : conclusion

▶ If n = 0 we have an axiom (and the bar can be omitted)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 48

Inference Systems: An Example
Natural Numbers
▶

O is a natural number [natO]
▶

n is a natural number
S(n) is a natural number [natS]

Addition as a Relation
▶

add(O, m, m)
[addO] with m is a natural number

▶
add(n, m, r)

add(S(n), m, S(r))
[addS] with n,m, r are natural numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 12 / 48

Inference System: Derivation Tree

Derivation Tree
A tree built using the rules of the inference system:
▶ the overall conclusion is the root
▶ the leaves are axioms

2+2=4
add(O, S(S(O)), S(S(O)))

[addO]

add(S(O), S(S(O)), S(S(S(O))))
[addS]

add(S(S(O)), S(S(O)), S(S(S(S(O)))))[addS]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 13 / 48

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 14 / 48

A Simple Imperative Language: W 0 – Syntax
Grammar
⟨prog⟩ ::= {⟨com⟩;}∗
⟨com⟩ ::= ⟨var⟩:=⟨aexp⟩

| if ⟨bexp⟩ then ⟨prog⟩ else ⟨prog⟩ end
| while ⟨bexp⟩ do ⟨prog⟩ end

⟨bexp⟩ ::= true | false | (⟨bexp⟩) | not ⟨bexp⟩ | ⟨bexp⟩ and ⟨bexp⟩
| ⟨aexp⟩= ⟨aexp⟩ | ⟨aexp⟩< ⟨aexp⟩

⟨aexp⟩ ::= ⟨num⟩ | ⟨var⟩ | (⟨aexp⟩)
| ⟨aexp⟩ ∗ ⟨aexp⟩ | ⟨aexp⟩+ ⟨aexp⟩ | ⟨aexp⟩− ⟨aexp⟩

⟨var⟩ : any non empty sequence of letters and digitsstarting with a letter
⟨num⟩ : any non empty sequence of digits, possibly preceded by -

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 15 / 48

Formalization of an Abstract Machine forW 0

Goal
▶ Describe how a program ofW 0 can be executed, step-by-step
▶ We need:

▶ A program, already syntactically analyzed
▶ A presentation of the memory

Abstract Syntax Tree
▶ Basically: a parse tree with all unnecessary details removed
▶ Not a convenient representation for writing: instead we useusual syntax + parenthesis to avoid ambiguities.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 16 / 48

Formalization of an Abstract Machine forW 0

Parse Tree / AST
if 0< x then x :=x + 1 else end

0

aexp

progelse

;

aexp

end

x

prog

;

com

prog

= aexp

x

<aexp com

bexp

1

+

aexp

x

thenif

prog
if

<
0 x

:=
x +
x 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 17 / 48

Memory
Values and State
▶ W 0 only stores numbers in variables
▶ Z: the set of numbers
▶ X : the set of variables
▶ Memory can be represented by a partial function: σ : X → Z
▶ Called state, environment, or store

Notation
Given σ a state, x a variable, n a number,

σ[x 7→ n]

is the state that returns n if applied to x , and return the same values that
σ if applied to other variables.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 18 / 48

Memory

Example 1
If σ is the partial function such that:
▶ σ(x) = 2

▶ σ(y) = 3

▶ σ is undefined for all other variables
σ[x 7→ 0] is such that:
▶ σ[x 7→ 0](x) = 0

▶ σ[x 7→ 0](y) = 3

▶ σ[x 7→ 0] is undefined for all other variables

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 19 / 48

Memory

Example 2
If σ is the partial function such that:
▶ σ(x) = 4

▶ σ(y) = 2

▶ σ is undefined for all other variables
σ[z 7→ 1] is such that:
▶ σ[z 7→ 1](x) = 4

▶ σ[z 7→ 1](y) = 2

▶ σ[z 7→ 1](z) = 1

▶ σ[z 7→ 1] is undefined for all other variables

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 20 / 48

Memory

Additional Notations
▶ σ⊥ is the function undefined for all variables

(σ⊥[x 7→ n1])[y 7→ n2] is only defined for x and y

▶ σ⊥ can be omitted and we write
[x 7→ n1][y 7→ n2] or [x 7→ n1, y 7→ n2]

Properties
▶ if x ̸= y , (σ[x 7→ n1])[y 7→ n2] = (σ[y 7→ n2])[x 7→ n1]

▶ (σ[x 7→ n1])[x 7→ n2] = σ[x 7→ n2]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 21 / 48

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 22 / 48

Structural Operational Semantics

Goal
Give a meaning to syntax
Transition Relation
▶ Execution formalized as a relation between two configurations
▶ A configuration is a pair ⟨prog , σ⟩
▶ This relation, denoted by→ (in infix notation), represents one

elementary step of execution
▶ First we need to evaluate arithmetic expressions and booleanexpressions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 23 / 48

SOS: Evaluation of Numbers
Syntax / Semantics
▶ The values of arithmetic expressions are numbers in Z
▶ Most basic arithmetic expressions: numbers (non-terminal ⟨num⟩)
▶ Numbers both inW 0 and usual mathematics are written assequences of digits (0 to 9)
▶ To highlight the difference between syntax and semantics, let’sassume for a moment that the syntax of numbers inW 0 is given by:

⟨num⟩ ::= ⟨digit⟩ | ⟨digit⟩⟨num⟩
⟨digit⟩ ::= 0 | 1

▶ First we need a way to translate the sequence of symbols 101010(W 0 syntax) into the number 42 belonging to Z

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 24 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]]

= 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers
Semantic Function N (alternative syntax)

N [[0]] = 0 N [[n0]] = 2×N [[n]]
N [[1]] = 1 N [[n1]] = 2×N [[n]] + 1

Example
N [[101010]] = 2×N [[10101]]

= 2× (2×N [[1010]] + 1)

= 2× (2× (2×N [[101]]) + 1)

= 2× (2× (2× (2×N [[10]] + 1)) + 1)

= 2× (2× (2× (2× (2× (N [[1]]) + 1)) + 1)

= 2× (2× (2× (2× (2× 1) + 1)) + 1)

= 2× (2× (2× (2× 2+ 1)) + 1)

= 2× (2× (2× 5) + 1)

= 2× (2× 10+ 1)

= 2× 21

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 48

SOS: Evaluation of Numbers

Semantics Function N

▶ W 0 syntax example: 42

▶ Mathematical notation: 42
▶ It is possible to write N for such a translation
▶ But it’s not very interesting
▶ Convention:we identifyW 0 syntax and mathematical notation for numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 48

SOS: Evaluation of Numbers

Semantics Function N

▶ W 0 syntax example: 42
▶ Mathematical notation: 42

▶ It is possible to write N for such a translation
▶ But it’s not very interesting
▶ Convention:we identifyW 0 syntax and mathematical notation for numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 48

SOS: Evaluation of Numbers

Semantics Function N

▶ W 0 syntax example: 42
▶ Mathematical notation: 42
▶ It is possible to write N for such a translation

▶ But it’s not very interesting
▶ Convention:we identifyW 0 syntax and mathematical notation for numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 48

SOS: Evaluation of Numbers

Semantics Function N

▶ W 0 syntax example: 42
▶ Mathematical notation: 42
▶ It is possible to write N for such a translation
▶ But it’s not very interesting

▶ Convention:we identifyW 0 syntax and mathematical notation for numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 48

SOS: Evaluation of Numbers

Semantics Function N

▶ W 0 syntax example: 42
▶ Mathematical notation: 42
▶ It is possible to write N for such a translation
▶ But it’s not very interesting
▶ Convention:we identifyW 0 syntax and mathematical notation for numbers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 48

SOS: Evaluation of Arithmetic Expressions
Semantic Function A
▶ A takes two arguments:

▶ aW 0 arithmetic expression (non-terminal ⟨aexp⟩)
▶ an environment σ

▶ A returns a number in Z
▶ In the literature, instead of writing A(e, σ)such an application is denoted by A[[e]]σ

A[[x]]σ = σ(x) for any variable x (3)
A[[n]]σ = n for any number n (4)

For any arithmetic expressions e1 and e2:
A[[e1 ∗ e2]]σ = A[[e1]]σ ×A[[e2]]σ (5)
A[[e1+ e2]]σ = A[[e1]]σ +A[[e2]]σ (6)
A[[e1− e2]]σ = A[[e1]]σ −A[[e2]]σ (7)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 27 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ =

A[[2 ∗ x]]σ +A[[y]]σ by (6)
= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)

= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)

= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Arithmetic Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = A[[2 ∗ x]]σ +A[[y]]σ by (6)

= (A[[2]]σ ×A[[x]]σ) +A[[y]]σ by (5)
= (2×A[[x]]σ) +A[[y]]σ by (4)
= (2× 20) +A[[y]]σ by (3) and σ(x) = 20

= (2× 20) + 2 by (3) and σ(y) = 2

= 42

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 48

SOS: Evaluation of Boolean Expressions

The Set T
T = { T , F }Operations:
▶ Negation: ¬

¬T = F
¬F = T

▶ Conjunction: ∧
T ∧ T = T
T ∧ F = F
F ∧ T = F
F ∧ F = F

Semantic Function B
▶ B takes two arguments:

▶ aW 0 boolean expression(non-terminal ⟨bexp⟩)
▶ an environment σ

▶ B returns a value in T

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 29 / 48

SOS: Evaluation of Boolean Expressions
Semantic Function B

B[[true]]σ = T (8)
B[[false]]σ = F (9)
B[[not b]]σ = ¬B[[b]]σ (10)

B[[b1 and b2]]σ = B[[b1]]σ ∧ B[[b2]]σ (11)
B[[a1= a2]]σ =

{
T if A[[a1]]σ = A[[a2]]σ

F otherwise (12)
B[[a1< a2]]σ =

{
T if A[[a1]]σ < A[[a2]]σ

F otherwise (13)
where:

▶ b, b1, b2 are arbitraryW 0 boolean expressions
▶ a1, a2 are arbitraryW 0 arithmetic expressions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 30 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],

A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example

A[[0]]σ = 0 by (4)therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)

therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)therefore:

B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)

and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:

B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

SOS: Evaluation of Boolean Expressions

Example
Assuming σ = [x 7→ 20, y 7→ 2],
A[[(2 ∗ x)+ y]]σ = 42 by previous example
A[[0]]σ = 0 by (4)therefore:
B[[(2 ∗ x)+ y < 0]]σ = F by (13)and finally:
B[[not ((2 ∗ x)+ y < 0)]]σ = T by (10)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 48

Exercise: Semantic Function A

Evaluate
▶ expression x − y in environment σ1 = [x 7→ 42, y 7→ 0]
▶ expression x + y in environment σ2 = [x 7→ 42, y 7→ 0]
▶ expression y − x in environment σ3 = [x 7→ 42, y 7→ 42]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 32 / 48

Exercise: Semantic Function B

Evaluate
▶ expression 1 < n in environment σ = [n 7→ 3,m 7→ 1]
▶ expression 1 < n in environment σ = [n 7→ 2,m 7→ 3]
▶ expression 1 < n in environment σ = [n 7→ 1,m 7→ 6]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 33 / 48

SOS: Execution of Commands/Instructions

The Relation→
▶ Execution formalized as a binary relation between configurations
▶ Reminder: a configuration is a pair ⟨prog , σ⟩ where

▶ prog is a sequence ofW 0 instructions (non-terminal ⟨prog⟩)
▶ σ is an environment: a partial function from the set of variables to Z

▶ ⟨prog1, σ1⟩ → ⟨prog2, σ2⟩ means starting for a memory state σ1,after the executing the first instruction of the list of instructions
prog1 the renaming instructions are prog2 and the memory is instate σ2

▶ We define→ as an inference system (with axioms only)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 34 / 48

SOS: Execution of Commands/Instructions
Transition as an Inference System

⟨x :=e; c , σ⟩ → ⟨c , σ[x 7→ n]⟩
where n = A[[e]]σ (assign)

⟨if b then c1 else c2 end; c , σ⟩ → ⟨c1; c , σ⟩
if B[[b]]σ = T (ift)

⟨if b then c1 else c2 end; c , σ⟩ → ⟨c2; c , σ⟩
if B[[b]]σ = F (iff)

⟨while b do c0 end; c , σ⟩ → ⟨if b then c0; while b do c0 end else end; c , σ⟩(while)
where:

▶ x is anyW 0 variable
▶ e is anyW 0 arithmetic expression
▶ b is anyW 0 boolean expression
▶ c , c0, c1, c2 are arbitraryW 0 programs (possibly empty)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 35 / 48

SOS: Execution of Commands/Instructions
Example Program: signal

if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end;

else

aexp

aexp

:=

end

;

aexp

com

:= aexp

aexps

aexp com

bexp

1

s

aexp

thenif

1

s

aexp

if

prog

aexp aexp ;

elses then

<

-

prog

;

;

com

prog

0

com

s

<

prog

endbexp

+

0

s

prog

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 36 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

Rule: ⟨if b then c1 else c2 end; c , σ⟩ → ⟨c1; c , σ⟩ (ift)

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0︸ ︷︷ ︸
b

then s:=s + 1;︸ ︷︷ ︸
c1

else if 0< s then s:=s − 1; else end;︸ ︷︷ ︸
c2

end; ︸︷︷︸
c

, σ⟩

Rule: ⟨if b then c1 else c2 end; c , σ⟩ → ⟨c1; c , σ⟩ (ift)

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0︸ ︷︷ ︸
b

then s:=s + 1;︸ ︷︷ ︸
c1

else if 0< s then s:=s − 1; else end;︸ ︷︷ ︸
c2

end; ︸︷︷︸
c

, σ⟩

Rule: ⟨if b then c1 else c2 end; c , σ⟩ → ⟨c1; c , σ⟩ (ift)
→ ⟨s:=s + 1;︸ ︷︷ ︸

c1

︸︷︷︸
c

, σ⟩ because B[[s < 0]]σ = T because A[[s]]σ = −1

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨s:=s + 1; , σ⟩ by rule (ift) because B[[s < 0]]σ = T because A[[s]]σ = −1

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨s:=s + 1; , σ⟩ by rule (ift) because B[[s < 0]]σ = T because A[[s]]σ = −1

Rule: ⟨x :=e; c , σ⟩ → ⟨c , σ[x 7→ n]⟩ with n = A[[e]]σ (assign)

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨ s︸︷︷︸
x

:= s + 1︸ ︷︷ ︸
e

; ︸︷︷︸
c

, σ⟩ because B[[s < 0]]σ = T because A[[s]]σ = −1

Rule: ⟨x :=e; c , σ⟩ → ⟨c , σ[x 7→ n]⟩ with n = A[[e]]σ (assign)

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨ s︸︷︷︸
x

:= s + 1︸ ︷︷ ︸
e

; ︸︷︷︸
c

, σ⟩ because B[[s < 0]]σ = T because A[[s]]σ = −1

Rule: ⟨x :=e; c , σ⟩ → ⟨c , σ[x 7→ n]⟩ with n = A[[e]]σ (assign)
→ ⟨︸︷︷︸

c

, σ[s 7→ 0]⟩ because A[[s + 1]]σ = σ(s) + 1 = 0

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

SOS: Execution of Commands/Instructions
Execution Example σ = [s 7→ −1]

⟨if s < 0 then s:=s + 1; else if 0< s then s:=s − 1; else end; end; , σ⟩

→ ⟨s:=s + 1; , σ⟩ by rule (ift) because B[[s < 0]]σ = T because A[[s]]σ = −1

→ ⟨ϵ, σ[s 7→ 0]⟩ by rule (assign) because A[[s + 1]]σ = σ(s) + 1 = 0

where ϵ is used to represent the empty sequence of instructions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 48

Exercise: Transition Relation→

SOS
▶ Execute the following program: x :=x − y ; y :=x + y ; x :=y − x ;

▶ starting from a state σ = [x 7→ 42, y 7→ 0]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 38 / 48

Exercise: Transition Relation→

SOS
▶ Execute the following program:

m:=1; while 1< n dom:=m ∗ n; n:=n− 1; end;

▶ starting from a state σ = [n 7→ 3]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 39 / 48

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 40 / 48

Natural Semantics

Difference between SOS and Natural Semantics
▶ SOS formalizes execution step-by-step
▶ Natural semantics is a relation between an initial configuration anda final state
▶ The judgments for this kind of semantics have the form:

⟨c, σ⟩ → σ′

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 41 / 48

A Natural Semantics forW 0

⟨ϵ, σ⟩ → σ
(noop)

⟨x :=e; , σ⟩ → σ[x 7→ n]
where n = A[[e]]σ (assign)

⟨c1, σ⟩ → σ′ ⟨c2, σ⟩′ → σ′′

⟨c1 c2, σ⟩ → σ′′ (sequence)
⟨c1, σ⟩ → σ1

⟨if b then c1 else c2 end; c , σ⟩ → σ1
if B[[b]]σ = T (ift)

⟨c2, σ⟩ → σ2
⟨if b then c1 else c2 end; c , σ⟩ → σ2

if B[[b]]σ = F (iff)
⟨while b do c end; , σ⟩ → σ

if B[[b]]σ = F (whilef)
⟨c , σ⟩ → σ′ ⟨while b do c end; , σ′⟩ → σ′′

⟨while b do c end; , σ⟩ → σ′′ if B[[b]]σ = T (whilet)
where: x is any variable, e , b are any arithmetic/boolean expressions, c , c1, c2 are arbitraryW 0

programs
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 42 / 48

Outline

1 Levels of Description
2 Mathematical Preliminaries
3 Description of a Programming Language: Operational SemanticsStructural Operational SemanticsNatural Semantics
4 Description of a Programming Language: Type System

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 43 / 48

TheW 1 Language
Grammar

⟨prog⟩ ::= {⟨decl⟩;}∗ {⟨com⟩;}∗
⟨decl⟩ ::= var ⟨identi�er⟩ is ⟨type⟩
⟨type⟩ ::= integer | boolean
⟨com⟩ ::= ⟨identi�er⟩:=⟨exp⟩

| if ⟨exp⟩ then {⟨com⟩;}∗ else {⟨com⟩;}∗ end
| while ⟨exp⟩ do {⟨com⟩;}∗ end

⟨exp⟩ ::= true | false | (⟨exp⟩) | not ⟨exp⟩ | ⟨exp⟩ and ⟨exp⟩
| ⟨exp⟩= ⟨exp⟩ | ⟨exp⟩< ⟨exp⟩ | ⟨num⟩ | ⟨identi�er⟩
| ⟨exp⟩ ∗ ⟨exp⟩ | ⟨exp⟩+ ⟨exp⟩ | ⟨exp⟩− ⟨exp⟩

⟨identi�er⟩ : any non empty sequence of letters and digitsstarting with a letter
⟨num⟩ : any non empty sequence of digits,possibly preceded by “-”

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 44 / 48

Typing

The Ingredients
▶ For an expression: we need its type (integer or boolean)
▶ For a command: we need to know it’s well typed, but it doesn’thave a type
▶ For a program: same as for a command
▶ We will use a type environment Γ that maps identifiers to theirtypes as declared
▶ Same notations for environments and type environments

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 45 / 48

Typing

Judgements for Typing Expressions
Γ ⊢ e : τ

reads “in type environment Γ the expression e has type τ ”
Judgements for Typing Commands and Programs
▶ Γ ⊢c com: the command com is well typed in typing environment Γ
▶ ⊢p c : the program c is well typed

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 46 / 48

Typing Expression
Γ(x) = τ

Γ ⊢ x : τ

Γ ⊢ n : integer

Γ ⊢ true : boolean Γ ⊢ false : boolean

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ e1 = e2 : boolean

Γ ⊢ e1 : integer Γ ⊢ e2 : integer

Γ ⊢ e1 ⊕ e2 : integer
with ⊕ ∈ {+, −, ∗}

Γ ⊢ e1 : boolean Γ ⊢ e2 : boolean

Γ ⊢ e1 and e2 : boolean

Γ ⊢ e1 : integer Γ ⊢ e2 : integer

Γ ⊢ e1 < e2 : boolean

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 47 / 48

Typing Commands and Programs
Commands

Γ(x) = τ Γ ⊢ e : τ

Γ ⊢c x :=e

Γ ⊢ e : boolean ∀com ∈ c1, Γ ⊢c com ∀com ∈ c2, Γ ⊢c com

Γ ⊢c if e then c1 else c2 end

Γ ⊢ e : boolean ∀com ∈ c , Γ ⊢c com

Γ ⊢c while e do c end

Programs
Γ = make(decls) ∀com ∈ c , Γ ⊢c com

⊢p decls c

where make creates the environment Γ from declarations
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 48 / 48

	Levels of Description
	Mathematical Preliminaries
	Description of a Programming Language: Operational Semantics
	Structural Operational Semantics
	Natural Semantics

	Description of a Programming Language: Type System

