SOM2IF15 - Compilation

Concepts of Programming Languages

Frédéric Loulergue

UNIVERSITE D'ORLEANS

2022

Chapters

@ Names and Environments
@ Topics in Control Structures
@ Topics in Control Abstraction
@ Topics in Structuring Data

© Memory Management

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

2/140

Reference

» Maurizio Gabbrielli, Simone Martini, Programming Languages:
Principles and Paradigms, Springer, 2010

» Thereafter mentioned as the “textbook”

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 3/ 140

Outline

@ Names and Environments
Names and Denotable Objects
Environments and Blocks
Scoping Rules
Summary

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 4/140

Reference
» Chapter 4 of the textbook J

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 5/ 140

@ Names and Environments
Names and Denotable Objects
Environments and Blocks
Scoping Rules
Summary

«O>» «Fr «=» «)

DA

Name

Name
A name is a sequence of characters used to represent, or denote,
another object (“object” is intended in a wide sense, not in the technical

sense of object-oriented languages)

Abstraction

» int x: data abstraction

» x is a symbolic identifier for a memory location
» abstracting from the low-level details of memory addresses

» void incr(int * x){ *x = *x + 1; }: control abstraction

» name associated with a set of commands
> visibility: name and parameters form an interface

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 7/ 140

Denotable Objects

Denotable Object

» A programming language element that can be given a name
» Many differences between programming languages

Examples

» User defined objects: variables, formal parameters, procedures (in
the broad sense: procedures, functions, methods, subprograms, ...),
user defined types, labels, modules, constants, exceptions, ...

» Programming language defined objects: primitive types, primitive
operations, predefined constants, ...

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 8/140

Binding

Definition

A binding is an association between a name and an object it denotes

Name and Object are Different

“The variable x has type int”
is an abbreviation for
“The value referenced with name x has type with name int”

Names and Objects

» An object can have different names:

List<Integer> 11 = new ArrayList();
List<Integer> 12 = 11;
» A name can be bound to different objects during execution
(define name 42)
(set! name "Forty Two")

Compilation - ©Frédéric Loulergue 2022

9 /140

Frédéric Loulergue

Binding Time

» Design of language: bindings between primitive constants, types
and operations of the language are defined

For example, + indicates addition, and int denotes the type of integers, ...

» Program writing Given that the programmer chooses names when
they write a program, we can consider this phase as one with the
partial definition of some bindings, later to be completed
For example, the binding of an identifier to a variable is defined in the
program but is effectively created only when the space for the variable is
allocated in memory

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 10/ 140

Binding Time

» Compile time The compiler, translating the constructs of the
high-level language into machine code, allocates memory space for
some of the data structures that can be statically processed.

For example, the global variables of a program

» Runtime This term denotes the entire period of time between
starting and termination of a program. All the associations that
have not previously been created must be formed at runtime.

For example, for bindings of variable identifiers to memory locations for
the local variables in a recursive procedure, or for pointer variables whose
memory is allocated dynamically

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 11/ 140

Linking and Loading

Linking and Loading
» What is exactly done in these phases depends on the programming
language
» The goal is to obtain an executable program from different modules

» One task related to names is to resolve references to externally
defined objects: add information in the caller code about where to
find the object externally defined

Binding Time related to Linking and Loading

Depending on the language and operating system, or even configurable:
» Static: prior to execution
» Dynamic: during execution

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 12 /140

@ Names and Environments
Names and Denotable Objects
Environments and Blocks
Scoping Rules
Summary

«O>» «Fr «=» «)

DA

Environment

Definition (Environment)

The set of associations between names and denotable objects which
exist at runtime at a specific point in the program and at a specific time
during execution, is called the (referencing) environment

Definition (Declaration)

A declaration is a construct that allows the introduction of an
association in the environment.

Example

int x;

int £ (){ return 0; }
type T = int;

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 14 / 140

Definition (Alias)
An alias is a name for a denotable object already named

Example

int *x, *y /| X,y: pointers to integers

x = (int*) malloc(sizeof (int)); / allocate heap memory

*x = 5; /| * dereference

y =X /|y points to the same object as x
*y = 10;

printf ("x=%d\n", *x);

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 15/ 140

Blocks: Definitions

Definition (Block)

A block is a textual region of the program, identified by a start sign and
an end sign, which can contain declarations local to that region, that is,
which appear within the region

Definition (Procedure block)

A block associated with a procedure is a block associated with
declarations local to a procedure. It corresponds textually to the body of
the procedure itself, extended with the declarations of formal
parameters.

Definition (In-line block)

An In-line block is a block which does not correspond to a declaration of
procedure and which can appear (in general) in any position where a
command can appear

= = = = =

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 16 / 140

Block: Nesting

Nested Block
» In most language, blocks can be nested
» Opening/closing of block should always be well parenthesised

Counter Example (not allowed)
open block A;

open block B;
close block A;

close block B;

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 17/ 140

Visibility

Definition (Visibility)

A declaration local to a block is visible in that block and in all blocks
listed within it, unless there is a new declaration of the same name in
that same block. In this case, in the block which contains the
redefinition the new declaration hides the previous one.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 18/ 140

Blocks: Examples

Java

class Block

{
static public void main(String [] a)
{
int x = 10;
{
double y = Math.Pl;
System.out.printin("y = "+y);
}
System.out.printin("x = "+x);
1
}

C

#include "stdlib . h"
#include "stdio. h"
int main(void)
{
int x =10;
{
double x = 42.25;
printf ("x = %f\n",x);
1
printf ("x = %d\n"x);
return EXIT_SUCCESS;
}

Frédéric Loulergue

Compilation - ©Frédéric Loulergue

2022

19/ 140

Types of Environments

Definition (Type of Environment)

The environment associated with a block is formed of the following
components:

» local environment: composed of the set of associations for names
declared locally to the block (for procedure blocks include the
formal parameters)

» Non-local environment: the environment formed from the
associations for names which are visible from inside a block but
which have not been declared locally

» Global environment: formed from associations created when the
program’s execution began. It contains the associations for names
which can be used in all blocks forming the program

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 20/ 140

Types of Environment

A: { / We assume A is the global block
int a=1;
B: {
int b=2;
int ¢ =2;
C:{
int ¢ =3;
int d;
d = at+b+c;
printf ("d = %d\n", d);
}
D:f
int e;
e = atb+c;
printf ("e = %d\n", e);
}
}
}

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 21/ 140

Operations on Environments

» Creation of associations between name and denoted object (haming):
elaboration of a declaration or connection of a formal to an actual
parameter when a new block containing the declaration is entered

» Reference to a denoted object via its name This is the use of the name in
an expression, in a command, or in any other context. The name is used to
access the denoted object.

» Deactivation of association between name and denoted object: when
entering a block in which a new association for that name is created
locally. The old association is not destroyed but remains inactive. It will be
usable again when the block containing the new association is left.

» Reactivation of an association between name and denoted object: When
leaving block in which a new association for that name is created locally,
reactivation occurs. The previous association can now be used.

» Destruction of an association between name and denoted object
(unnaming): on local associations when the block in which these
associations were created is exited. The association is removed from
environment and can no longer be used.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 22 /140

Operations on Denotable Objects

»> Creation of a denotable object This operation is performed while
allocating the storage necessary to contain the object. Sometimes,
creation includes also the initialisation of the object

» Access to a denotable object Using the name, and hence the
environment, we can access the denotable object and thus access its
value. At a given point in the program and during a given execution, there
is a one-to-one correspondence.

» Modification of a denotable object: for languages that allow mutability it
is possible to access the denotable object via a name and then modify its
value

» Destruction of a denotable object An object can be destroyed by
reallocating the memory reserved for it (explicitly or automatically)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 23/ 140

@ Names and Environments
Names and Denotable Objects
Environments and Blocks
Scoping Rules
Summary

«O>» «Fr «=» «)

DA

What will be printed?
A: {

int x = 0;
void fie(){
x =1,
}
B: {
int x;
fie();
}

print(x);
}

DA

a
u]
Q
it
v
a
it
it

Static Scoping

Rule 1
The declarations local to a block define the local environment of that
block.

The local declarations of a block include only those present in the block
(usually at the start of the block itself) and not those possibly present in
blocks nested inside the block in question

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 26/ 140

Static Scoping

Rule 2

» If a name is used inside a block, the valid association for this name
is the one present in the environment local to the block, if it exists.

» If no association for the name exists in the environment local to the
block, the associations existing in the environment local to the
block immediately containing the starting block are considered. If
the association is found in this block, it is the valid one, otherwise
the search continues with the blocks containing the one with which
we started, from the nearest to the furthest.

> If, during this search, the outermost block is reached and it contains
no association for the name, then this association must be looked
up in the language’s predefined environment.

» If no association exists here, there is an error.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 27 / 140

Static Scoping

Rule 3

A block can be assigned a name, in which case the name is part of the
local environment of the block which immediately includes the block to
which the name has been assigned. This is the case also for blocks
associated with procedures.

Pros and Cons
+ Environment present in a program by reading the text

+ Static verifications at compile time
+ Efficient compilation
- More complex to implement

Languages: most of them

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 28 /140

Example

{

int x =0;

void fie (int n){
X = n+1;

}

fie (3);

write(x);

{
int x =0;
fie (3);
write(x);

}

write(x);

«O>r «Fr <= =) E A

Dynamic Scoping

Definition (Dynamic Scope)

According to the rule of dynamic scope, the valid association for a name
X, at any point P of a program, is the most recent (in the temporal
sense) association created for X which is still active when control flow
arrives at P.

Pros and Cons

+ Simplifies runtime environment management

+ Useful for some very specific applications

- No static information for verification or optimization
Languages: APL, Lisp (some versions), Perl, ...

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 30/ 140

Dynamic Scoping

Typo in the Textbook (Fig 4.5, page 81)
{

const x = 0;

void fie ()f
write(x);

}

void foo(){
const x = 1;
{

const x = 2;

}
fie();

1

foo();

1
» Prints 1

v

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 31/140

@ Names and Environments

Names and Denotable Objects
Environments and Blocks
Scoping Rules

Summary

«O>» «F>» «Z» «E)» Q>

Summary

» Denotable objects are the objects to which names can be given.
Denotable objects vary according to the language under
consideration.

» Environment: set of associations existing at runtime between
names and denotable objects

» Blocks In-line or associated with procedures, these are the
fundamental construct for structuring the environment and for the
definition of visibility rules

» Environment Types: local environment, global environment and
non-local environment.

» Operations on Environments: Associations present in the
environment in addition to being created and destroyed, can also
be deactivated, and re-activated, and can be used.

» Scope Rules are rules which, in every language, determine the
visibility of names.

» Static Scope is typically used by the most important programming
languages.

» Dynamic Scope: easiest to implement. Used today in few
languages.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 33/ 140

Outline

@ Topics in Control Structures
Expressions and Commands
Sequence Control Commands
Recursion
Summary

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 34 /140

Reference
» Textbook Chapter 6 J

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 35/ 140

@ Topics in Control Structures

Expressions and Commands

Sequence Control Commands
Recursion

Summary

it

a
it
.

<O «Fr « > QA

Expressions and Commands: Textbook Definitions

Definition (Expressions)
An expressions is a syntactic entity whose evaluation either produces a
value or fails to terminate, in which case the expression is undefined

Definition (Commands)
A command is a syntactic entity whose evaluation does not necessarily
return a value but can have a side effect

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 37 / 140

Expressions and Commands: Formal Semantics View

Semantics of Expressions (W°, W*, W)
> A: (aexpr x State) — Z
» General form: Afe]o = n

Semantics of Commands (W?°, W1, W)
» Relation on (command x State) x (command x State)
» General form: (com, o) — (com’, o)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 38/ 140

Expressions and Commands

What does this program print?

#include "stdio. h"

int x =0;

int f(int y){ x =y + 1; return x; }

void main(void){
printf ("expr = %d\nx = %d\n", f(1)+f(2), x);
printf ("x = %d\n", x);

}

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 39 /140

Expressions and Commands: Experiments

What does this program print?
» Compiler: gcc 5.5.0 version 9.1.0 (on MacQS)

expr = 5
x =0
x = 3
» Compiler: clang version (on MacQOS)
expr = 5
x =3
x =3

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

40/ 140

The C Standard ISO/IEC 9899:2011

6.5 Expressions

» An expression is a sequence of operators and operands that specifies
computation of a value, or that designates an object or a function, or that
generates side effects, or that performs a combination thereof.

» Between the previous and next sequence point an object shall have its
stored value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value to
be stored.

» The order of evaluation of the function designator, the actual arguments,
and subexpressions within the actual arguments is unspecified, but there
is a sequence point before the actual call.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 41/ 140

The C Standard ISO/IEC 9899:2011

6.5 Expressions

» An expression is a sequence of operators and operands that specifies
computation of a value, or that designates an object or a function, or that
generates side effects, or that performs a combination thereof.

» Between the previous and next sequence point an object shall have its
stored value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value to
be stored.

» The order of evaluation of the function designator, the actual arguments,
and subexpressions within the actual arguments is unspecified, but there
is a sequence point before the actual call.

The Previous Program
> is undefined (why?)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 41/ 140

Expressions

Order of Evaluation Matters Because

» of side-effects
» of finite arithmetic: a + b — c with a = MAX_INT, b < ¢

Order of Evaluation of Expressions

» in most languages and for most operations is undefined (to allow

for compiler optimization)
> is fixed for conditional expressions and at least some boolean

operations (in C: && and | | for e.g.)

Advices for Writing Correct Programs
» know the semantics of your language!
» being as explicit as possible using parenthesis, ...
» avoid side effects in expressions

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 42 /140

@ Topics in Control Structures

Expressions and Commands

Sequence Control Commands
Recursion

Summary

it

a
it
.

<O «Fr « > QA

Sequence Control Commands

Explicit Sequence Control
» Sequential Command: ;
» Composite Command: block of lists of commands

> C-like:{ ... }
> Pascal-like: begin ... end
> goto

» Other: break, continue, return

Conditional and Iterative Commands
» Conditional Commands: Textbook section 6.3.2
» Iterative Commands: Textbook section 6.3.3

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 44 /140

Structured Programming

Debate in the 70s

> Related to the rejection of the goto statement:
Edsger W. Dijkstra. 1968. Letters to the editor: go to statement
considered harmful. Commun. ACM 11, 3 (March 1968), 147-148.

» Prescribes programming language features and a programming
methodology

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 45/ 140

http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/362929.362947

Structured Programming

» Top-down or hierarchical design of programs
» Code modularisation:

» procedures and functions
> modules

» Meaningful names and comments
» Use of structured data types (e.g. records)

» Use of structured control constructs:

> asingle entry point
> asingle exit point

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 46/ 140

@ Topics in Control Structures

Expressions and Commands

Sequence Control Commands
Recursion

Summary

it

a
it
.

<O «Fr o« > QA

Recursion

Definition (Informal)

» A recursive procedure is a procedure whose body contains a call to
itself

» Recursion can be indirect: two (or more) procedures can be
mutually recursive

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 48 / 140

Mathematical Definitions

No Total Function f : N — N Defined by
{ f(0) = 0

f(n) = f(n)+1forn>0

No Unique Function Defined by
f(1) =1(1)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

49 / 140

Valid Recursive Procedure Definitions

Non Terminating

int f(int n){ return (n == 0)7 1 : (f(n)+1); }

Non Terminating

int f(int n) {
if (n==1) return f(1);
}

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 50/ 140

Execution

factorial version 2

factorial int f(int n, int res)
int fact(int n){ i ré’?ugrr%)reS'
if (n<1) else ,
return 1; return f(n-1, n*res);
else }
} return n*fact(n-1); int fact(int n)
return f(n, 1);

3

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 51/140

Tail Recursion

Definition (Tail Recursion)
> Let f be a function which, in its body, contains a call to a function g
(different from f or equal to f).
» The call of g is said to be a tail call if the function f returns the value
returned by g without having to perform any other computation.
» We say that the function f is tail recursive if all the recursive calls
present in f are tail calls.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 52 /140

Iteration and Recursion

Tail Recursion
» Memory occupation can be optimized

» But is not always optimized
To check: a non terminating tail recursive function

Iteration or Recursion
> Iteration more natural for arrays, matrices, tables
» Recursion more natural for symbolic structures (lists, trees)
» Tail recursive functions can be as efficient as loops

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 53/ 140

@ Topics in Control Structures

Expressions and Commands
Sequence Control Commands
Recursion

Summary

<O «Fr o« > > QA

it
a
it

Summary

» Distinction expression / command (or instruction)
» Expressions: problems related to evaluation order

» Commands/Instructions:

» overview of existing commands
» structured programming
» recursion

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 55/ 140

Outline

@ Topics in Control Abstraction
Control Abstractions
Procedures and Functions
Parameter Passing Modes
Summary

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 56 / 140

Reference

» Textbook Chapter 7

® Topics in Control Abstraction
Control Abstractions
Procedures and Functions

Parameter Passing Modes
Summary

«O>» «F>» «Z» «E)» Q>

Control Abstractions

Subprograms

» Provide control abstraction: functions and procedures
» Higher-Order Functions:

» Functions as parameter
» Functions as result
» Textbook section 7.2

Exceptions
» Textbook section 7.3

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 59 /140

® Topics in Control Abstraction
Control Abstractions
Procedures and Functions

Parameter Passing Modes
Summary

«O>» «Fr «=» «)

DA

Procedures and Functions

Vocabulary

int r;
int fact(int n){

return (n<0)71:(n*fact(n-1)); » Header
} » Formal parameters
void main(void){ » Actual parameters
r= fact(6);) » Return value
printf ("fact(6) = \%d", r); .
» Non local environment

3

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 61/ 140

Procedures and Functions

Functional Abstraction
Software component:
» provides services to its environment
» clients are not interested in how they are implemented
» clients are interested in how to use them
Subprograms as components:
» clients not interested by the body
» clients interested by the header

» real functional abstraction:
possible to substitute a function by another one with the same
header and semantics

» procedures/functions in PL only provide partial support for
functional abstraction

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 62 /140

® Topics in Control Abstraction
Control Abstractions
Procedures and Functions

Parameter Passing Modes
Summary

«O>» «Fr «=» «)

DA

void write_a(const int t[], int size){
assert(size >=0);
printf ("[");
for(int i=0; i<size; i++)
printf ("%d ", t[i]);
printf ("]\ n");
}
void to_zero(int t[], int size){
assert(size >=0);
for(int i=0; i<size; i++)
t[i] =0;
}
void swap(int x, int y)
{ int tmp =x; x=y; y=tmp; }
int main(char ** argyv, int argc)
{
int t] ={ 1, 2, 3, 4, 5}
swap(t[0], t[1]); write_a(t, 5);
to_zero(t, 5); write_a(t, 5);

}

program parameters;
const size = b;
type arrb = array [1..size] of integer;
procedure write_a (const t: arrb);
var i : 1..size;
begin

write(?[?);

for i:=1 to size do

write(t[il,? ?);
writeln(?]?)

end;
procedure to_zero(t : arrb);
var i : 1..size;
begin
for i := 1 to size do
t[i] := 0;
end;

procedure swap(var x : integer;
var y : integer);
var tmp : integer;
begin tmp:=x; x:=y; y:=tmp end;
var t: arrb = (1, 2, 3, 4, 5);
begin
swap(t[1],t[2]); write_a(t);
to_zero(t); write_a(t);
end.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 64 / 140

def to_zero(a):
for i in range(0,len(a)):
alil] = 0;

def swap(x, y):
tmp=x;
X=y;
y=tmp;

a=1[1, 2, 3, 4, 5];

swap(a[0], al[1]); print(a);
to_zero(a); print(a);

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 65 /140

The examples

» C:[1,2,3,4,5] and [0,0,0,0,0]
Pass-by-Value but the value of an array is a reference to its first cell
» Pascal: [2,1,3,4,5] and [2,1,3,4,5]
Pass-by-Value by default, Pass-by-Reference with var, and the
value of an array is the sequence of the values of its cells
» Python: [1,2,3,4,5] and [0,0,0,0,0]
Pass-by-Value but the value of an array is a reference to its first cell

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 66 /140

Frédéric Loulergue

#include <iostream>
using namespace std;
void swap(int* x, int* y)
{

int tmp = *x;

*¥X = Xy,
*y = tmp;
}
int main()
{
int a = 0, b = 42;
cout << "a =" << a
<< "b="<<b << "\n";
swap(&a, &b);
cout << "a =" << a
<< " b ="<<Db << "\n";
}

#include <iostream>
using namespace std;
void swap(int & x, int & y)

int tmp = x;
X =5;
y = tmp;
}
int main()
{
int a = 0, b = 42;
cout << "a = " << a
<< "b="<<Db << "\n";
swap(a, b);
cout << "a =" << a
<< " b ="<Db << "\n";
}

In both examples, the values are swapped: left, pass-by-value with the
value is an address, right, pass-by-reference

Compilation - ©Frédéric Loulergue

2022

67 /140

Parameter Passing Modes

Pass by Value
» Actual parameters are evaluated
» The values are used to initialize the formal parameters
» Formal parameters are local variables
» Advantages: fast for scalar, protection
» Disadvantages: copy, additional memory

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 68 /140

Parameter Passing Modes

Pass by Reference

» A formal parameter is an alias for its corresponding actual
parameter

» Advantage: no copy, no additional memory
» Disadvantage: indirection, no protection

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 69 / 140

Parameter Passing Modes

Pass by Value and Pointers/References

In C, Java, C++: it is the value of the pointer/reference (i.e. an
abstraction of a memory address) that is copied, not the value pointed

to.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 70/ 140

Parameter Passing Modes

Pass by Constant
» Like call by value
» The PL implementation checks that no assignment is made
> [t no assignment made, passing the reference is safe

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 71/ 140

Parameter Passing Modes

Pass by Result
» Only for output parameters
» The parameter should be a I-value (something that can be assigned)

» The body of the subprograms computes the result in a local
variable that is then copied back to the actual parameter

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 72 / 140

Parameter Passing Modes

Pass by Value-Result
» Pass by Value for the entry
» Pass be Results for the exit

Pass by Value-Result and Pass by Reference
» Are they equivalent?

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 73/ 140

Parameter Passing Modes

Pass by Name
» In functional programming: Haskell
» In imperative languages too: Algol
» No current imperative PL supports CbN

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 74 / 140

® Topics in Control Abstraction
Control Abstractions
Procedures and Functions

Parameter Passing Modes
Summary

«O>» «Fr «=» «)

DA

Summary

» the concept of procedure

» parameter passing methods:
> by value

by reference

by constant

by result

by value/result

by name

vVvVvyyVvyy

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022

76/ 140

Outline

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022

77/ 140

Reference
» Textbook Chapter 8 J

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 78 /140

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

«O>» «Fr «=» «)

DA

Types

Definition (Data Type)
A data type is a homogeneous collection of values, effectively
presented, equipped with a set of operations which manipulate these

values

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 80/ 140

Types

Data types are used
1. At the design level, as support for the conceptual organisation

2. At the program level, as support for correctness

3. At the translation level, as support for the implementation.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 81/ 140

Type Systems

Definition (Type System)
A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds

of values they compute.
B. Pierce, Types and Programming Languages. MIT Press, 2002

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 82 /140

Type Systems

Definition (Type System)
A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds

of values they compute.
B. Pierce, Types and Programming Languages. MIT Press, 2002

A type system consists of
» Predefined types of the language
» Mechanisms to define new types
» Mechanisms to control the use of types:
» Equivalence rules: when are two types equal?
» Compatibility
» (Type inference)

» How are types checked: statically or dynamically?

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 82 /140

Type Systems

Type Safety

A type system (and its associated language) is type safe (or strongly
typed) when no program during its execution can generate a non
signaled error caused by a type violation

Kind of Values
Denotable : they can be given a name
Expressible : they can be the result of a complex expression
Storable : they can be stored in a variable

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 83 /140

Dynamic Checking

Pros:
» some checks can only (simply) be done at runtime
» compilation is faster

Cons:
» Execution is slower
» Additional memory is required

Static Checking

Pros:
» type errors are detected before execution
» better memory usage
» faster execution

Cons:
» compilation is slower
» good programs may be rejected

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

84/140

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

«O>» «Fr «=» «)

DA

Scalar Types

Booleans
> Not always expressible (no boolean type in C)
» If expressible, not always denotable or storable (e.g. W° and W)

Characters
» The character set may depend on the language: ASCII, Unicode
» The operations strongly depend on the langauge
» Usually denotable, expressible, storable

Integers

» Values: a finite number, between [—-2*, 2t — 1] for typical values of t
(usually 8, 16, 32, 64, sometimes 31, e.g. OCaml)

» Sometimes unbounded integers: Scheme

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 86 /140

Scalar Type: Floating Point Numbers

What does this program prints?

class Floating{
public static void main(String [] a)

{
double x = O;
for(int i =0; i<8;i++)
x +=0.1;
System.out.printin(x);
1
}

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 87 /140

Scalar Type: Floating Point Numbers

What does this program prints?

class Floating{

public static void main(String [] a) 8;
{ .
double x = O; 0..30000000000000004
for(int i =0; i<8;i++) 0.4
x +=0.1; 0.5
System.out.printin(x); 0.6
} } 0.7
0.7999999999999999

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 87 / 140

Scalar Type: void/unit

Values
» In some languages, an empty type void): there is no expressible
values of this type, values of this type are not denotable, not
storable: C, Java
» Type unit: only one value, usually written ’'()". Usually denotable,
expressible, storable.

» OCaml: unit, ()
> Racket: the value is #<void>, the result of function void that doesn't
take any argument. Procedures such as display return #<void>

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 88 /140

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

«O>» «Fr «=» «)

DA

Composite Types

Definition (Composite Type)
A composite type is a type obtained by combining other types. J

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 90/ 140

Composite Types

Definition (Composite Type)
A composite type is a type obtained by combining other types.

Common Composite Types
> array
» structure
» object/class
» pointers/references

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 90/ 140

Records

Definition (Record)

> A record is a (generally ordered) finite collection of named types
called fields

» In imperative languages each field behaves like a variable of the
same type

» In functional languages, records are cartesian products but where
names can be used to access components of tuples

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 91/ 140

Records: Example in Scheme

(define-record-type point (fields x y))

The following procedures are automatically defined:

(make-point x y) ; constructor

(point? obj) ; predicate

(point-x p) ; accessor for field x
(point-y p) ; accessor for field y

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 92 /140

Records: Examples

What does this program print?

typedef struct { float x; float y; } point;

int main(void)

{
point pl, p2;
pl.x = 0.0; pl.y = 1.0;
p2.x = 0.0; p2.y = 1.0;
printf("%d \n", pl==p2);

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 93 /140

Variants Records and Unions

Definition (Variant Record and Union)

» A particular form of record is that in which some fields are mutually
exclusive. We talk of variant record in this case.

» In C a union is a collection of fields that share the same area of
storage and such that only one is active at a time

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 94 /140

Variants and Unions

Example

#include "stdio. h"
typedef enum { red, green, blue } color;
typedef enum { two_D, colored, three_D } kind;
typedef struct {

float x; float v;

kind k;

union { color c; float z; };
} point;
void main(int argv, char ** argc)
{

point p;

p.k = colored;
p.x =0; p.y =0; p.c =red;
printf ("(x=%f, y=%f, z=%f)\n", p.X, p.y, p.z);

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 95 /140

Variants and Unions

Example

#include "stdio. h"
typedef enum { red, green, blue } color; . .

typedef enum { two_D, colored, three_D } kind; Variant/Union
typedef struct { can break type

float x; float v; safety
kind k; > InC, C++,
un!on{ color c; float z; }; Pascal, ...
} point;
void main(int argv, char ** argc) > Type safety
{ preserved in
point p; Ada, OCaml,
p.k = colored; Reason, ...

p.x =0; p.y =0; p.c =red;
printf ("(x=%f, y=%f, z=%f)\n", p.X, p.y, p.z);

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 95 /140

Arrays

Definition (Array)
» An array is an ordered homogeneous collection of data elements
» Each element is identified by its position in the collection
» Usually the elements should be of the same type"

Design Issues
» What are the types for positions?
Are ranges checked?
When does allocation take place?

>

>

» Multidimensional arrays?
» Non rectangular arrays?
>

Initialization?

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 96 / 140

Reference to an array element

«O>» «F>» «Z» «E)» Q>

Arrays

Reference to an array element
» name of the collection + subscript(s)/indice(s) for position(s)
» C-like languages: a[i] []
> Ada: a(i,j)
» OCaml: a. (i) .(j)
» Perl: for array a, first element: $a[0]

Types for positions

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 97 / 140

Arrays

Reference to an array element
» name of the collection + subscript(s)/indice(s) for position(s)
» C-like languages: a[i] []
> Ada: a(i,j)
» OCaml: a. (i) .(j)
» Perl: for array a, first element: $a[0]

Types for positions
» C-like, OCaml-like: integer numbers (from 0)
» Pascal/Ada: integer ranges and enumeration types

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

97 /140

Memory Allocation

«O>» «F>» «Z» «E)» o

Arrays

Memory Allocation
» Static array: static storage, static position range

» Fixed stack-dynamic array: allocation at declaration elaboration,
static position range

» Stack-dynamic array: allocation and position range at declaration
elaboration

» Fixed heap-dynamic array: same as previous but allocated in the
heap

» Heap-dynamic array: size can change during the lifetime of the
array

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 98 /140

Arrays

Examples
> Static:
» Fixed stack-dynamic:
» Stack-dynamic array:
» Fixed heap-dynamic:

» Heap-dynamic:

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 99 /140

Arrays

Shapes

» Regular/rectangular array: the rows have the same size, the
columns have the same size
» Jagged array: the row may have a different size

» C: rectangular (jagged with pointers and malloc)

» C#/Java/ML: jagged arrays (basically array of arrays rather than
multidimensional)

> C++, Ada: both

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 100/ 140

OperatiOns

«O>» «F>» «Z» «E)» o

Operations

In most languages:

» access to an array element
> (length)

«O>» «Fr «=» «) Q>

Arrays

Operations
In most languages:
» access to an array element
> (length)
Higher-level language:
» Operations on array as a whole
» Example: APL, Reason with higher-order functions
» Example: libraries for C++ using overloading
» Much easier to grasp quickly the global structure of an algorithm

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 101/ 140

Arrays

Bound Checks

> At runtime:
» Java, Ada, C#, Python, Scheme, ...

» No check: C, C++
» Compiler switch: OCaml

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 102/ 140

Pointers Types and References

Definition (I-value)

A l-value is a value that represents a location in memory

Definition (Reference)

» |n some languages, a variable does not contain directly a value but a

[-value. The value is usual in the heap at the location denoted by
the I-value.

» In Java:

» variables for basic types are containers
> variables for objects are references

Definition (Pointer)

» Some language do not have references, but can explicity use values
of a pointer type

» Values of a pointer type are I-values

= ES anen
Frédéric Loulergue

Compilation - ©Frédéric Loulergue 2022 103/ 140

Pointers Types and Reference

Design Issues
» References or pointer types?

» Typed pointers or untyped pointers?
» Pointer operations:
» deferencing
» pointer arithmetic
» Related memory operations:
» memory allocation
» memory deallocation
» Main problem: pointer to unallocated memory:

» tonull
> to memory non longer allocated (dangling pointer)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 104/ 140

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

«O>» «Fr «=» «)

DA

Type Equivalence

When two formally different types are equal?

» Equivalence by name: only when they have the same name
Variant: weak equivalence by name (aliases are considered equal)
Example: Pascal

type T1 = 1..10;
type T2 = 1..10;
type T3 = int;
type T4 = int;

» Equivalence by structure

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 106/ 140

Structural Equivalence

Definition (Structural Equivalence)

Structural equivalence of types is the (least) equivalence relation
satisfying the following properties:

» The name of a type is equivalent to itself

> If atype T is introduced with the definition type T = expression
(or equivalent definition in other syntax), T is equivalent to
expression

> If two types are constructed by applying the same type constructor
to equivalent types, then the two types are equivalent.

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 107 /140

@ Topics in Structuring Data
Data Types and Type Systems
Scalar Types
Composite Types
Type Equivalence
Summary

«O>» «Fr «=» «)

DA

Summary

» Definition of type as a set of values and operations and the role of
types in design, implementation and execution of programs

\4

Type systems as the set of constructs and mechanisms that
regulate and define the use of types in a programming language

The distinction between dynamic and static type checking
The concept of type-safe systems, that is safe with respect to types
The primary scalar types, some of which are discrete types

vvyyvyy

The primary composite types, among which we have discussed
records, variant records and unions, arrays and pointers: for each of
these types, we have also presented the primary storage techniques

» The concept of type equivalence, distinguishing between
equivalence by name and structural equivalence

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 109 /140

Outline

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks
Dynamic Memory Management using a Heap
Summary

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022 110/ 140

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks

Dynamic Memory Management using a Heap
Summary

«O>» «Fr «=» «)

DA

Static and Dynamic Memory Management

Low Level Languages
» Simple
» Static: program + data loaded into memory before execution begins

High-Level Languages
» More complicated

» Constraints depend on the language features

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 112/ 140

Recursion and Memory Allocation

Recursion
int fib (int n) { » Number of active procedures'depends
if (n == 0) on values known only at runtime
return 1; » Each call requires memory space for:
else if (n == 1) > parameters
return 1; > intermediate results
» return addresses
else >
return fib(n-1) + .
fib(n-2); » Block: Last I.n FI.I’St Out
} = block activation stack

Memory Allocation
» Explicit memory allocation/deallocation (for e.g. C malloc/free)
» Calls can alternate in any order = not possible to use a stack
» Use of a structure called heap

“

™ = =

SaRe

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 113/ 140

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks

Dynamic Memory Management using a Heap
Summary

«O>» «Fr «=» «)

DA

Static Memory Management

Elements that can be statically allocated
» Global variables
Procedures instructions

| 2
» Constants (if non dependent on values known at runtime)
» Compiler generated tables for runtime support:

» name handling

> type checking

» garbage collection

> ...
» Language without recursion:

» memory for blocks and procedure (sub-routines) calls

> it works because without recursion and without parallelism, only one

call per procedure can be active at a given time

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 115/ 140

Static Memory Management

System
Information

Return
Address

Parameters

Local
Variables

Intermediate|
Results

Procedure 1 Procedure 2 o Procedure n

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 116/ 140

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks

Dynamic Memory Management using a Heap
Summary

«O>» «Fr «=» «)

DA

Dynamic Memory Management using Stacks

Example of Activation Record/Frame

A
int a=1;
int b =0;
B:{
int ¢ =3;
int b =3;
1
b=a+1,;
}

o

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022 118/140

Dynamic Memory Management using Stacks

Example of Activation Record/Frame

A
int a=1;
int b =0;
B:{ | — %J
int ¢ =3; b 0
int b=3; a 1
}
b=a+1;
}

Act Rec for A

v

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022 118/140

Dynamic Memory Management using Stacks

Example of Activation Record/Frame

A
int a=1;
int b =0; b 0
BZ{ a 1 Act Rec for A
int ¢ =3;
int b=3; |
} b | 3
} b=a+1; c 3 Act Rec for B

v

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 118/ 140

Dynamic Memory Management using Stacks

Example of Activation Record/Frame

A
int a=1;
int b =0;
B:{ | — %J
int ¢ =3; b 2
int b =3; a 1
}
b=a+1;
}

Act Rec for A

v

Frédéric Loulergue Compilation - ©Frédéric Loulergue

2022 118/140

Activation Records for In-line Blocks

Activation Record

» Intermediate results When calculations must be performed, it can
be necessary to store intermediate results, even if the programmer
does not assign an explicit name to them

Example

{

int a = 3;

b = (atx) / (x+y);
}

a 3
a—+x value
r+y value

Frédéric Loulergue

Compilation - ©Frédéric Loulergue

2022 119/140

Activation Records for In-line Blocks

Activation Record

» Local Variables

> Memory size: depends on the type and number of variables
» Size information: in general determined at compiled time
» Size information: but in some cases at runtime

(for example dynamic arrays)

» Dynamic chain pointer: pointer to the previous activation record on
the stack (or the last activation record created)

Remark: compiled languages
» both local variables and intermediate results are stored in registers instead
of the stack, for improving performances
» there is a limited number of registers, so both the stack and registers may
be used
> this phase of compilation is named register allocation and is based on an
algorithm of graph coloring

— = — — = A

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 120/ 140

Activation Records for Procedure Blocks

Activation Record

Dynamic Chain Pointer

» Intermediate results, local variables,
dynamic chain pointer: as in-line blocks Static Chain Pointer

» Return address: contains the address of the
first instruction to execute after the call to

Return Address

the current procedure/function has Address for Result
terminated execution
» Returned result: (only for functions) Parameters

contains the address (inside the caller’s
activation record) of the memory location
where the subprogram stores the value to
be returned when the function terminates
» Parameters: the values of actual
parameters used to call the procedure or Intermediate Results
function are stored here

Local Variables

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 121/ 140

Recursion and Activation Records

factorial

int fact(int n){
if (n<1)
return 1;
else
return n*fact(n-1);

Activation Record

Dynamic Chain Ptr
Address for Result
n

Intermediate Result

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 122/140

Recursion and Activation Records

factorial version 2

int f(int n, int res){
if (n<1)
return res;
else
return f(n-1, n*res);
1
int fact(int n){
return f(n, 1);

}

Activation Record for f

Dynamic Chain Ptr
Address for Result
n

res

Frédéric Loulergue

Compilation - ©Frédéric Loulergue

2022 123/140

Stack Management

Start of Stack

Act Rec
>
Act Rec \\
<«--- :\é Dynamic Chain
e Pointer
il
Act Rec Pointer \—-—‘—p]
Act Rec
Top
Free memory
area for stack

Frédéric Loulergue

Compilation - ©Frédéric Loulergue

Activation Record
Stack
» Act Rec Pointer:
the current
frame/environ-
ment
» Ptr Stack Top:
optional if
predefined size of
activation records
» stack
management:
code fragments
inserted before
and after a
procedure call or
start/end of inline
block

2022 124/ 140

€

Stack Management

Caller/Callee
» Caller: program/procedure that performs a call
» Callee: procedure that has been called
» Both perform part of the stack management
>

In the caller: calling sequence include the call itself and code
immediately before and after
In the callee:

» prologue: to be executed just after the call
> epilogue: when the procedure ends execution

v

» Exact distribution of code: depends on the implementation, for
optimization the callee should have most of the code

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 125/ 140

Stack Management

Tasks at the Start of the Call
» Allocation of stack space to store the new activation record

» Modification of program counter to give the control to the callee,
the incremented old value should be saved as the return address

» Modification of activation record pointer to set the current
environment

v

Parameter passing: done by the caller
> Register save, for e.g. the old activation record pointer

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 126/ 140

Stack Management

Tasks at the End of the Call
» Update of program counter to return the control to the caller

» Value return: usually should be stored in the activation record of
the caller (address accessible from the activation record of the
callee)

» Return of registers: previsouly saved registers are restored
» Deallocation of stack space

Remark

We omitted the data structures necessary for scope rules
(see textbook section 5.5)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 127 /140

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks

Dynamic Memory Management using a Heap
Summary

«O>» «Fr «=» «)

DA

Example of C Program

1int *p, *q; /* p,q NULL pointers to integers */
malloc (sizeof (int));

2p =
3

4q =

5

s*%p = 0;
7%q = 1;
sfree(p);
sfree(q);

Frédéric Loulergue

/* allocates the memory pointed to by p */

/%
/%
/%
/%
/%

malloc (sizeof (int));

allocates the memory pointed to by q */

dereferences and assigns */
dereferences and assigns */

deallocates the memory pointed to by p */
deallocates the memory pointed to by q */

Compilation - ©Frédéric Loulergue

2022

129 /140

Fixed Sized Blocks

Free List
» Linked list of addresses of free blocks
» Allocation: removes the first element of the list and return the
address
» Deallocation: stores back the deallocated address at the beginning
of the list

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 130/ 140

Fixed Sized Blocks

LLStart [——F—» -] LL Start
e
< -

Free List for Heap of Fixed Size Block
In Gray: block in use

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 131/ 140

Variable-Length Blocks

Techniques
» An array requires a contiguous region

» Goal of techniques for variable-length blocks:

» Good memory occupation
» Good execution speed

= rational trade-off

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 132/ 140

Variable-Length Blocks

Problems
. Free Memory
» Internal fragmentation: _
the allocated memoryis | [] x — 4
Occupied
larger than the L - Memory
requested memory (for .
e.g. basic blocks 16 y Requested
’ Memory

bytes, requested
memory 24 bytes)

T+Yy >z

» External fragmentation: . <z
because of y<z
allocation/deallocation
not all free memory can i
be occupied

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 133/ 140

Variable-Length Blocks

Single Free List
» List of blocks of variable size

» Threshold size: s
» Requested memory of size n: if available block of size k > n, the
block can be used:
» if k — n < s: internal fragmentation
» otherwise a new block of size k — nis added to the free list
» Search for available blocks:

» First fit: first block of sufficient size (fast)

> Best fit: block with smallest sufficient size (memory occupation)

» Data structure: list ordered by block size (search faster, insertion
slower)

» Deallocation: if adjacent blocks are free too, they are merged to
avoid external fragmentation (partial compaction)

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 134/ 140

Variable-Length Blocks

Multiple Free Lists
» Different free lists for different sizes
» Sizes: static or dynamic
» Dynamic:

» Buddy system (powers of 2)
» Fibonacci heap

» If no block of a given size is available, a bigger one is split
> When two “buddy” blocks are free they are merged

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 135/ 140

Variable-Length Blocks

Buddy System
» Allocated block with size a power of 2
2% is the smallest possible size

Free list for blocks of size 2 is at level/index m — k
Request for allocation of a block of size n:
> find k such that 2k—1 < n < 2k
» |ook for the first free block in the free list of index m — k
» if there is no free block, look for a free block in the list of the

previous level m — (k 4 1), and split the obtained free block in two
blocks of size 2k

> repeat if there is still no free block at level m — (k + 1)
» Request for deallocation of a block: if the “buddy” of the
deallocated block is free, then they are merged

>
» If 2™ is the memory size there are m — s + 1 free lists
>
>

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 136/ 140

Pros and Cons

Buddy System
+ less external fragmentation than one free list
+ search for a block that fits very efficient
+ allocation/deallocation cost is low
- internal fragmentation
» Variants (mostly block size)
» Implementation details are important in practice

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 137/ 140

Memory Management: Implicit or Explicit?

In C: Explicit
» Memory allocation in the heap with malloc
» Memory deallocation in the heap with free

In Java: Implicit
» Memory allocation in the heap with new
» No explicit memory deallocation

» Need for automatic memory management: a GC

» GC = Garbage Collector
» GC = Glaneur de cellules

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022

138/ 140

© Memory Management
Techniques for Memory Management
Static Memory Management
Dynamic Memory Management using Stacks

Dynamic Memory Management using a Heap
Summary

«O>» «Fr «=» «)

DA

Summary

Memory management depends on the language features

Static only memory management possible without recursion

Usually a mix:

> static memory management for some features (e.g. global variables)
» dynamic memory management for others (for e.g. blocks)

Stack-Based Memory Management:

» Activation records for in-line and procedure blocks
» Stack management by code fragments in the caller and callee

» Heap-Based Memory Management:

» Common techniques for fixed-size and variable-size blocks
» Fragmentation problem and how to limit it

>

» Recursion requires dynamic memory management
>

>

v

Frédéric Loulergue Compilation - ©Frédéric Loulergue 2022 140/ 140

	Names and Environments
	Names and Denotable Objects
	Environments and Blocks
	Scoping Rules
	Summary

	Topics in Control Structures
	Expressions and Commands
	Sequence Control Commands
	Recursion
	Summary

	Topics in Control Abstraction
	Control Abstractions
	Procedures and Functions
	Parameter Passing Modes
	Summary

	Topics in Structuring Data
	Data Types and Type Systems
	Scalar Types
	Composite Types
	Type Equivalence
	Summary

	Memory Management
	Techniques for Memory Management
	Static Memory Management
	Dynamic Memory Management using Stacks
	Dynamic Memory Management using a Heap
	Summary

