
SOM2IF15 – Compilation
Syntactic Analysis

Frédéric Loulergue

2022

Outline

1 Reminder: Context Free Grammars & BNF Notation

2 Syntactic Analysis in Compilers: an Overview

3 Syntactic Analysis with ANTLR

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 2 / 32

Syntax: Context-Free Grammars

Definition (Context-Free Grammar)
A context-free grammar is a quadruple (NT ,T ,R, S) where:
1. NT is a finite set of symbols (non-terminal symbols, or syntacticcategories)
2. T is a finite set of symbols (terminal symbols)
3. R is a finite set of productions (or rules), each of which is of theform: V → w where:

▶ V (the head) is a single non-terminal symbol
▶ w (the body) is a string composed of zero or more terminal ornon-terminal symbols (w is a string over T ∪ NT)

4. S is the initial symbol (S ∈ NT)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 32

Syntax: Context-Free Grammar Example
Example: A Context-Free Grammar for SL
G =

(
{X ,D,N,A,E , I ,P},
{a, . . . , z , 0, . . . , 9,+,−, /,×,=, (,), ; },
R, P

)
where R is the following sets of productions:

1. D → 0

...
9. D → 9

10. N → D

11. N → N D

12. X → a

...
38. X → z

39. A → X

40. A → N

41. E → A

42. E → A+ A

43. E → A− A

44. E → A/A

45. E → A× A

46. I → print(X)

47. I → input(X)

48. I → X = E

49. I → ifz X then X = E

50. I → ifdz X then X = E

51. P → ϵ

52. P → I ;P

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 32

Syntax: Context-Free Grammars
Definition (Derivation)
Let G be a grammar (NT ,T ,R, S), and two strings u and u′ over T ∪NT .
▶ u′ immediately derived from u (written u ⇒ u′) if u′ is obtained byreplacing in u a non-terminal symbol V by a sequence w with therule V → w .
▶ u′ is derived from u (written u ⇒∗ u′) if there exists a finitesequence of immediate derivations from u to u′.

Definition (Generated Language)
The language generated by a grammar G = (NT ,T ,R, S), is the set

L(G) = { w ∈ T ∗ | S ⇒∗ w }

That is every word (sequence of finite symbol) that can be derived fromthe initial element of the grammar.
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 32

Syntax: Context-Free Grammars – Derivation Example
P

⇒ I ;P by rule 52: P → I ;P
⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P

⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P

⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ

⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)

⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E

⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)

⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A

⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X

⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N

⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a

⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D

⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Syntax: Context-Free Grammars – Derivation Example
P ⇒ I ;P by rule 52: P → I ;P

⇒ I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ;P by rule 52: P → I ;P
⇒ I ; I ; I ; by rule 51: P → ϵ
⇒ input(X); I ; I ; by rule 47: I → input(X)
⇒ input(X);X = E ; I ; by rule 48: I → X = E
⇒ input(X);X = E ; print(X); by rule 46: I → input(X)
⇒ input(X);X = A+ A; print(X); by rule 42: E → A+ A
⇒ input(X);X = X + A; print(X); by rule 39: A → X
⇒ input(X);X = X + N; print(X); by rule 40: A → N
⇒4 input(a); a = a+ N; print(a); by rule 12: X → a
⇒ input(a); a = a+ D; print(a); by rule 10: N → D
⇒ input(a); a = a+ 1; print(a); by rule 2: D → 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 32

Exercise
G =

(
{F ,D,N}, {0, . . . , 9, .},R, F)where R is the following sets of productions:

▶ D → 0...
▶ D → 9

▶ N → ND

▶ N → D

▶ F → N.N

▶ F → N

Show that there exists a derivation such that: F ⇒∗
255.32

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 7 / 32

Syntax: Context-Free Grammars

Definition (Derivation Tree)
Let G be a grammar (NT ,T ,R,S).A derivation tree (or parse tree) is an ordered tree in which:
1. Each node is labelled with a symbol in NT ∪ T ∪ {ϵ}
2. The root is labelled with S

3. Each interior node is labelled with a symbol in NT
4. If a certain node has the label A ∈ NT and its children are

m1, . . . ,mk labelled respectively with X1, . . . ,Xk where Xi ∈ NT ∪Tfor all i ∈ [1, k], then A → X1 . . .Xk is a production of R
5. If a node has label ϵ, then that node is the unique child. If A is itsparent, A → ϵ is a production in R

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 8 / 32

Syntax: Context-Free Grammars
Example
G =

(
{X ,D,N,A,E , I ,P},
{a, . . . , z, 0, . . . , 9,+,−, /,×,=, (,), ; }, R, P

)
with R the following sets of productions:
1. D → 0

...
9. D → 9

10. N → D

11. N → N D

12. X → a

...
38. X → z

39. A → X

40. A → N

41. E → A

42. E → A+ A

43. E → A− A

44. E → A/A

45. E → A× A

46. I → print(X)

47. I → input(X)

48. I → X = E

49. I →
ifz X then X = E

50. I →
ifdz X then X = E

51. P → ϵ

52. P → P I ;

Parse Tree
print(y); y = y + 1;

+

1

d

print aa)

p

x

p

yx

i ;

i = e;

y

y

p

n

(

x

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 9 / 32

Syntax: Context-Free Grammars

Definition
A string of characters s admits a parse tree T , if s is the result of theleft-to-right traversal of T
Definition (Ambiguity)
A grammar G is ambiguous if there exists at least one string of L(G)which admits more than one derivation tree

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 10 / 32

Syntax: Context-Free Grammars
Example
• G =

(
{ E , N, D }, { 0, . . . , 9,+,×, }, R, E)with R the following sets of productions:

▶ D → 0

▶ ...
▶ D → 9

▶ N → D

▶ N → ND

▶ E → N

▶ E → E+E

▶ E → E×E

• 1+ 2× 3 admits two parse trees
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 32

Syntax: Context-Free Grammars
Exercise
• G =

(
{ B, E , S }, { a, b, c ,+,¬,∨,∧ }, R, E)with R the following sets of productions:
▶ B → a

▶ B → b

▶ B → c

▶ S → ∨

▶ E → B

▶ E → E S E

▶ E → ¬E
▶ S → ∧

• Find, at least, two parse trees for a ∨ ¬b ∧ c ∨ b.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 12 / 32

Syntax: Context-Free Grammars

Backus-Naur Form (BNF)
▶ Usually→ is replace by ::=

▶ Usually non-terminal symbols are written between angle brackets
▶ Production with the same head are grouped together andseparated using a vertical bar

There are variants of these conventions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 13 / 32

Syntax: Context-Free Grammars

Backus-Naur Form: An Example
1. ⟨D⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 || 9
2. ⟨N⟩ ::= ⟨D⟩ | ⟨N⟩⟨D⟩
3. ⟨X ⟩ ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s

| t | u | v | w | x | y | z
4. ⟨A⟩ ::= ⟨X ⟩ | ⟨N⟩
5. ⟨E ⟩ ::= ⟨A⟩ | ⟨A⟩+ ⟨A⟩ | ⟨A⟩ − ⟨A⟩ | ⟨A⟩/⟨A⟩ | ⟨A⟩ × ⟨A⟩
6. ⟨I ⟩ ::= print(⟨X ⟩) | input(⟨X ⟩) | ⟨X ⟩ = ⟨E ⟩

| ifz ⟨X ⟩ then ⟨X ⟩ = ⟨E ⟩
7. ⟨P⟩ ::= | ⟨I ⟩; ⟨P⟩

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 14 / 32

Syntax: Context-Free Grammars

Extended Backus-Naur Form (BNF)
BNF extended with regular expression notations
▶ Many variants
▶ Usually includes:

▶ Grouping
▶ Repetitions

Example
A program is a, possibly empty, sequence of instructions:

⟨P⟩ ::= {⟨I ⟩; }∗

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 15 / 32

How to Define the Syntax of a Programming Language?

BNF and Extended BNF
▶ There are many variants of these notations
▶ Extended BNF = BNF + grouping + repetitions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 16 / 32

More Examples
Java Reference Manual
▶ Terminal symbols are shown in fixed width font in the productions of thelexical and syntactic grammars [. . .]
▶ Nonterminal symbols are shown in italic type [. . .]
▶ The syntax {x} on the right-hand side of a production denotes zero ormore occurrences of x [. . .]
▶ The syntax [x] on the right-hand side of a production denotes zero or oneoccurrences of x . That is, x is an optional symbol [. . .]

EnumDeclaration:
ClassModifier enum TypeIdentifier [Superinterfaces] EnumBody

EnumBody:
[EnumConstantList] [,] [EnumBodyDeclarations]

EnumConstantList:
EnumConstant , EnumConstant

EnumConstant:
EnumConstantModifier Identifier [([ArgumentList])] [ClassBody]

EnumConstantModifier:
Annotation

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 17 / 32

More Examples

PascalPascal ReFerence Manual Data ljtpeS

array-type

-C array reD (.1 Index-type I type I

index-type ., ordinal-type I •

The type fonowing tne word of Is tne component-type of tne array.
WLEt£NTATICti NOTE

In the current Implementation, the index-type ShoUld not be Imglnt. or a
SUbrange of longint, and arrays shOUld not contain more than 32767
bytes.

ExanpJesOF array-types:
array[1. .100] of real
array[boolem] of color

If tne component-type of an array-type Is also an array-type, the result can be
regarded as a single multi-dimenslonal array_ The declarat10n of such an array
is equivalent to toe declaration Of a multl-dlmensional array, as lllustrated by
the following examples:

array[booleal] of array[1. .10] of array[s1ze] of real
Is equivalent to:

array[boolean, 1. .10, size] of real
Likewise,

packed array(1 •• 10] of packed array[1. .8] of booleal
Is equivalent to:

packed array[l •• 10, 1. .8] of boolean
"Equivalent" means that the compUer does the same thing with the two
constructions.
A component of an array can be accessed by referencing the array and applying
one or more Indexes (see section 4.3.1).

3-11

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 18 / 32

Outline

1 Reminder: Context Free Grammars & BNF Notation

2 Syntactic Analysis in Compilers: an Overview

3 Syntactic Analysis with ANTLR

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 19 / 32

Syntactic Analysis
Two Phases
▶ Lexical analysis:source program

−→ sequence ofwords/tokens
▶ Parsing:sequence oftokens −→phrase structure(tree)

Example
while (x > 0) {

x := x − 1;
y := y + 1}
⇓ lexical analysis

while (x > 0) { . . . y }
⇓ parsing

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 20 / 32

Lexical Analysis
Overview
▶ Tokens as regular expressions
▶ Regular expressions→ automata (RE→ NFA→ DFA)
▶ Implementation of automata

References
▶ Automata Theory / “Théorie des langages”
▶ Appel Chapter 2

Tools
▶ JavaCC
▶ SableCC
▶ Lex
▶ OCamlLex
▶ . . .

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 21 / 32

Parsing

Expressivity of Formalisms
▶ A programming language cannot (in general) be described only by aregular expression
▶ More expressive formalism: context free grammars
▶ Notation: Backus Naur Form (BNF)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 22 / 32

Parsing

Algorithms for Parsing (Appel Chapter 3)
▶ LL(k): leftmost-derivation, k symbols lookahead

▶ recursive-descent (predictive)
▶ predictive parsing tables

▶ LR(k): rightmost-derivation, k token lookahead
▶ stack + k tokens
▶ 2 operations:

▶ shift: input token→ stack)
▶ reduce: grammar rule applied to the stack

▶ shift or reduce: automaton (parsing table)
▶ LALR(1): optimization of the parsing table

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 23 / 32

Parsing: Hierarchy of Grammar ClassesCHAPTER THREE. PARSING

Unambiguous Grammars

LL(0)

LL(1)

LL(k)

LR(0)

SLR

LALR(1)

LR(1)

LR(k)

Ambiguous
Grammars

FIGURE 3.29. A hierarchy of grammar classes.

For example, the items in states 6 and 13 of the LR(1) parser for Gram-
mar 3.26 (Figure 3.27) are identical if the lookahead sets are ignored. Also,
states 7 and 12 are identical except for lookahead, as are states 8 and 11 and
states 10 and 14. Merging these pairs of states gives the LALR(1) parsing
table shown in Table 3.28b.

For some grammars, the LALR(1) table contains reduce-reduce conflicts
where the LR(1) table has none, but in practice the difference matters little.
What does matter is that the LALR(1) parsing table requires less memory to
represent than the LR(1) table, since there can be many fewer states.

HIERARCHY OF GRAMMAR CLASSES
A grammar is said to be LALR(1) if its LALR(1) parsing table contains no
conflicts. All SLR grammars are LALR(1), but not vice versa. Figure 3.29
shows the relationship between several classes of grammars.

Any reasonable programming language has a LALR(1) grammar, and there
are many parser-generator tools available for LALR(1) grammars. For this

66

Appel page 66

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 24 / 32

Parsing: Parser Generators
Principle
▶ Input: grammar in BNF-like notation
▶ Output: programs for parsing
▶ Rely on lexers

Tools
▶ JavaCC: LL(k)
▶ SableCC: LALR(1)
▶ Yacc: LALR(1)
▶ Menhir: LR(1)
▶ ANTLR: ALL(*) (paper)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 32

http://dx.doi.org/10.1145/2660193.2660202

Outline

1 Reminder: Context Free Grammars & BNF Notation

2 Syntactic Analysis in Compilers: an Overview

3 Syntactic Analysis with ANTLR

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 32

Lexical Analysis with ANTLR
Lexer Grammar
▶ Set of “lexer rules”
▶ Rule format:Non-terminal (uppercase) : regular expression

Example (file: Example.g4)
lexer grammar Example;

ID : [a-zA-Z]+ ; // identifiers

INT: [0-9]+ ; // integers

NEWLINE : '\r'? '\n' ; // line return

WS : [\t] -> skip; // skip spaces

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 27 / 32

Keywords and Identifiers

Non-disjoint Lexical Rules
▶ Assume var is a reserved word of the language
▶ Lexer grammar:

lexer grammar Example;

VAR : 'var' ; // keyword var

ID : [a-zA-Z]+ ; // identifiers

▶ Priority: order of rules (VAR has priority over ID)
▶ var recognized as the VAR token
▶ variable recognized as an ID token

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 32

Parsing with ANTLR

Syntactic Rules
▶ BNF-like notation
▶ Rule format:Non-terminal (lowercase) : sequence of terminal/non-terminal
▶ Alternative: |
▶ End of rule: ;
▶ Special terminal: EOF (end of file)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 29 / 32

Example

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 30 / 32

Usage
Code Generation
▶ antlr4 grammar file
▶ javac *.java

▶ Test: grun Grammar-name non-terminal -gui
Example

grun Pico expression -gui

1+2*3

Control+D

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 32

Grammar Rule
A Grammar Rule in Details
expression : expression op=('*'|'/') expression #MulDiv

▶ ANTLR produces Java (or other language) code to represent parse trees
▶ Each node is an object of the class Context
▶ Code easier to use when each rule is labeled:

each particular context will have its own “context” class
Example: the label is #MulDiv

▶ Non-terminal symbols are translated as access methods
Example:
ExpressionContext expression(int i)

▶ Annotation op= allows to add a field op to the class MulDivContext thatallows to get the recognized token (of type Token)
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 32 / 32

	Reminder: Context Free Grammars & BNF Notation
	Syntactic Analysis in Compilers: an Overview
	Syntactic Analysis with ANTLR

