
SOM2IF15 – Compilation
Concepts of Programming Languages

Frédéric Loulergue

2022

Chapters
1 Names and Environments
2 Topics in Control Structures
3 Topics in Control Abstraction
4 Topics in Structuring Data
5 Memory Management

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 2 / 140

Reference

▶ Maurizio Gabbrielli, Simone Martini, Programming Languages:
Principles and Paradigms, Springer, 2010

▶ Thereafter mentioned as the “textbook”

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 140

Outline
1 Names and EnvironmentsNames and Denotable ObjectsEnvironments and BlocksScoping RulesSummary
2 Topics in Control Structures
3 Topics in Control Abstraction
4 Topics in Structuring Data
5 Memory Management

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 140

Reference
▶ Chapter 4 of the textbook

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 140

Outline

1 Names and EnvironmentsNames and Denotable ObjectsEnvironments and BlocksScoping RulesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 140

Name
Name
A name is a sequence of characters used to represent, or denote,another object (“object” is intended in a wide sense, not in the technicalsense of object-oriented languages)
Abstraction
▶ int x: data abstraction

▶ x is a symbolic identifier for a memory location
▶ abstracting from the low-level details of memory addresses

▶ void incr(int * x){ *x = *x + 1; }: control abstraction
▶ name associated with a set of commands
▶ visibility: name and parameters form an interface

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 7 / 140

Denotable Objects

Denotable Object
▶ A programming language element that can be given a name
▶ Many differences between programming languages

Examples
▶ User defined objects: variables, formal parameters, procedures (inthe broad sense: procedures, functions, methods, subprograms, . . .),user defined types, labels, modules, constants, exceptions, . . .
▶ Programming language defined objects: primitive types, primitiveoperations, predefined constants, . . .

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 8 / 140

Binding
Definition
A binding is an association between a name and an object it denotes
Name and Object are Different

“The variable x has type int”is an abbreviation for“The value referenced with name x has type with name int”
Names and Objects
▶ An object can have different names:

List<Integer> l1 = new ArrayList();

List<Integer> l2 = l1;

▶ A name can be bound to different objects during execution
(define name 42)

(set! name "Forty Two")

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 9 / 140

Binding Time

▶ Design of language: bindings between primitive constants, typesand operations of the language are defined
For example, + indicates addition, and int denotes the type of integers, . . .

▶ Program writing Given that the programmer chooses names whenthey write a program, we can consider this phase as one with thepartial definition of some bindings, later to be completed
For example, the binding of an identifier to a variable is defined in the
program but is effectively created only when the space for the variable is
allocated in memory

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 10 / 140

Binding Time

▶ Compile time The compiler, translating the constructs of thehigh-level language into machine code, allocates memory space forsome of the data structures that can be statically processed.
For example, the global variables of a program

▶ Runtime This term denotes the entire period of time betweenstarting and termination of a program. All the associations thathave not previously been created must be formed at runtime.
For example, for bindings of variable identifiers to memory locations for
the local variables in a recursive procedure, or for pointer variables whose
memory is allocated dynamically

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 140

Linking and Loading
Linking and Loading
▶ What is exactly done in these phases depends on the programminglanguage
▶ The goal is to obtain an executable program from different modules
▶ One task related to names is to resolve references to externallydefined objects: add information in the caller code about where tofind the object externally defined

Binding Time related to Linking and Loading
Depending on the language and operating system, or even configurable:
▶ Static: prior to execution
▶ Dynamic: during execution

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 12 / 140

Outline

1 Names and EnvironmentsNames and Denotable ObjectsEnvironments and BlocksScoping RulesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 13 / 140

Environment
Definition (Environment)
The set of associations between names and denotable objects whichexist at runtime at a specific point in the program and at a specific timeduring execution, is called the (referencing) environment

Definition (Declaration)
A declaration is a construct that allows the introduction of anassociation in the environment.
Example
int x;

int f (){ return 0; }

type T = int;

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 14 / 140

Definition (Alias)
An alias is a name for a denotable object already named
Example
int *x, *y // x, y: pointers to integersx = (int *) malloc(sizeof (int)); // allocate heap memory*x = 5; // * dereferencey = x; // y points to the same object as x*y = 10;printf ("x=%d\n", *x);

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 15 / 140

Blocks: Definitions
Definition (Block)
A block is a textual region of the program, identified by a start sign andan end sign, which can contain declarations local to that region, that is,which appear within the region
Definition (Procedure block)
A block associated with a procedure is a block associated withdeclarations local to a procedure. It corresponds textually to the body ofthe procedure itself, extended with the declarations of formalparameters.
Definition (In-line block)
An In-line block is a block which does not correspond to a declaration ofprocedure and which can appear (in general) in any position where acommand can appear

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 16 / 140

Block: Nesting

Nested Block
▶ In most language, blocks can be nested
▶ Opening/closing of block should always be well parenthesised

Counter Example (not allowed)
open block A;

open block B;

close block A;

close block B;

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 17 / 140

Visibility

Definition (Visibility)
A declaration local to a block is visible in that block and in all blockslisted within it, unless there is a new declaration of the same name inthat same block. In this case, in the block which contains theredefinition the new declaration hides the previous one.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 18 / 140

Blocks: Examples

Java
class Block{ static public void main(String [] a){ int x = 10;{ double y = Math.PI;System.out.println ("y = "+y);}System.out.println ("x = "+x);}}

C
#include "stdlib . h"#include "stdio. h"int main(void){ int x = 10;{ double x = 42.25;printf ("x = %f\n",x);}printf ("x = %d\n",x);return EXIT_SUCCESS;}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 19 / 140

Types of Environments

Definition (Type of Environment)
The environment associated with a block is formed of the followingcomponents:
▶ local environment: composed of the set of associations for namesdeclared locally to the block (for procedure blocks include theformal parameters)
▶ Non-local environment: the environment formed from theassociations for names which are visible from inside a block butwhich have not been declared locally
▶ Global environment: formed from associations created when theprogram’s execution began. It contains the associations for nameswhich can be used in all blocks forming the program

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 20 / 140

Types of Environment
A: { // We assume A is the global blockint a = 1;B: {int b = 2;int c = 2;C: {int c = 3;int d;d = a+b+c;printf ("d = %d\n", d);}D:{int e;e = a+b+c;printf ("e = %d\n", e);}}}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 21 / 140

Operations on Environments
▶ Creation of associations between name and denoted object (naming):elaboration of a declaration or connection of a formal to an actualparameter when a new block containing the declaration is entered
▶ Reference to a denoted object via its name This is the use of the name inan expression, in a command, or in any other context. The name is used toaccess the denoted object.
▶ Deactivation of association between name and denoted object: whenentering a block in which a new association for that name is createdlocally. The old association is not destroyed but remains inactive. It will beusable again when the block containing the new association is left.
▶ Reactivation of an association between name and denoted object: Whenleaving block in which a new association for that name is created locally,reactivation occurs. The previous association can now be used.
▶ Destruction of an association between name and denoted object

(unnaming): on local associations when the block in which theseassociations were created is exited. The association is removed fromenvironment and can no longer be used.
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 22 / 140

Operations on Denotable Objects
▶ Creation of a denotable object This operation is performed whileallocating the storage necessary to contain the object. Sometimes,creation includes also the initialisation of the object
▶ Access to a denotable object Using the name, and hence theenvironment, we can access the denotable object and thus access itsvalue. At a given point in the program and during a given execution, thereis a one-to-one correspondence.
▶ Modification of a denotable object: for languages that allow mutability itis possible to access the denotable object via a name and then modify itsvalue
▶ Destruction of a denotable object An object can be destroyed byreallocating the memory reserved for it (explicitly or automatically)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 23 / 140

Outline

1 Names and EnvironmentsNames and Denotable ObjectsEnvironments and BlocksScoping RulesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 24 / 140

Scoping Rules: An Example

What will be printed?
A: {

int x = 0;

void fie(){

x = 1;

}

B: {

int x;

fie();

}

print(x);

}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 140

Static Scoping

Rule 1
The declarations local to a block define the local environment of thatblock.
The local declarations of a block include only those present in the block(usually at the start of the block itself) and not those possibly present inblocks nested inside the block in question

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 140

Static Scoping
Rule 2
▶ If a name is used inside a block, the valid association for this nameis the one present in the environment local to the block, if it exists.
▶ If no association for the name exists in the environment local to theblock, the associations existing in the environment local to theblock immediately containing the starting block are considered. Ifthe association is found in this block, it is the valid one, otherwisethe search continues with the blocks containing the one with whichwe started, from the nearest to the furthest.
▶ If, during this search, the outermost block is reached and it containsno association for the name, then this association must be lookedup in the language’s predefined environment.
▶ If no association exists here, there is an error.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 27 / 140

Static Scoping
Rule 3
A block can be assigned a name, in which case the name is part of thelocal environment of the block which immediately includes the block towhich the name has been assigned. This is the case also for blocksassociated with procedures.
Pros and Cons
+ Environment present in a program by reading the text
+ Static verifications at compile time
+ Efficient compilation
- More complex to implement

Languages: most of them

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 28 / 140

Static Scoping
Example
{ int x = 0;void fie (int n){x = n+1;}fie (3);write(x);{ int x = 0;fie (3);write(x);}write(x);}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 29 / 140

Dynamic Scoping

Definition (Dynamic Scope)
According to the rule of dynamic scope, the valid association for a name
X , at any point P of a program, is the most recent (in the temporalsense) association created for X which is still active when control flowarrives at P .
Pros and Cons
+ Simplifies runtime environment management
+ Useful for some very specific applications
- No static information for verification or optimization

Languages: APL, Lisp (some versions), Perl, . . .

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 30 / 140

Dynamic Scoping
Typo in the Textbook (Fig 4.5, page 81)
{ const x = 0;void fie (){write(x);}void foo(){const x = 1;{ const x = 2;}

fie();}foo();}
▶ Prints 1

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 31 / 140

Outline

1 Names and EnvironmentsNames and Denotable ObjectsEnvironments and BlocksScoping RulesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 32 / 140

Summary
▶ Denotable objects are the objects to which names can be given.Denotable objects vary according to the language underconsideration.
▶ Environment: set of associations existing at runtime betweennames and denotable objects
▶ Blocks In-line or associated with procedures, these are thefundamental construct for structuring the environment and for thedefinition of visibility rules
▶ Environment Types: local environment, global environment andnon-local environment.
▶ Operations on Environments: Associations present in theenvironment in addition to being created and destroyed, can alsobe deactivated, and re-activated, and can be used.
▶ Scope Rules are rules which, in every language, determine thevisibility of names.
▶ Static Scope is typically used by the most important programminglanguages.
▶ Dynamic Scope: easiest to implement. Used today in fewlanguages.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 33 / 140

Outline
1 Names and Environments
2 Topics in Control StructuresExpressions and CommandsSequence Control CommandsRecursionSummary
3 Topics in Control Abstraction
4 Topics in Structuring Data
5 Memory Management

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 34 / 140

Reference
▶ Textbook Chapter 6

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 35 / 140

Outline

2 Topics in Control StructuresExpressions and CommandsSequence Control CommandsRecursionSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 36 / 140

Expressions and Commands: Textbook Definitions

Definition (Expressions)
An expressions is a syntactic entity whose evaluation either produces avalue or fails to terminate, in which case the expression is undefined
Definition (Commands)
A command is a syntactic entity whose evaluation does not necessarilyreturn a value but can have a side effect

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 37 / 140

Expressions and Commands: Formal Semantics View

Semantics of Expressions (W 0,W 1,W)
▶ A : (aexpr × State) → Z
▶ General form: A[[e]]σ = n

Semantics of Commands (W 0,W 1,W)
▶ Relation on (command × State)× (command × State)

▶ General form: ⟨com, σ⟩ → ⟨com′, σ′⟩

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 38 / 140

Expressions and Commands
What does this program print?
#include "stdio. h"int x = 0;int f (int y){ x = y + 1; return x; }void main(void){printf ("expr = %d\nx = %d\n", f(1)+f(2), x);printf ("x = %d\n", x);}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 39 / 140

Expressions and Commands: Experiments

What does this program print?
▶ Compiler: gcc 5.5.0 version 9.1.0 (on MacOS)

expr = 5

x = 0

x = 3

▶ Compiler: clang version (on MacOS)
expr = 5

x = 3

x = 3

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 40 / 140

The C Standard ISO/IEC 9899:2011
6.5 Expressions
▶ An expression is a sequence of operators and operands that specifiescomputation of a value, or that designates an object or a function, or thatgenerates side effects, or that performs a combination thereof.
▶ Between the previous and next sequence point an object shall have itsstored value modified at most once by the evaluation of an expression.Furthermore, the prior value shall be read only to determine the value tobe stored.
▶ The order of evaluation of the function designator, the actual arguments,and subexpressions within the actual arguments is unspecified, but thereis a sequence point before the actual call.

The Previous Program
▶ is undefined (why?)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 41 / 140

The C Standard ISO/IEC 9899:2011
6.5 Expressions
▶ An expression is a sequence of operators and operands that specifiescomputation of a value, or that designates an object or a function, or thatgenerates side effects, or that performs a combination thereof.
▶ Between the previous and next sequence point an object shall have itsstored value modified at most once by the evaluation of an expression.Furthermore, the prior value shall be read only to determine the value tobe stored.
▶ The order of evaluation of the function designator, the actual arguments,and subexpressions within the actual arguments is unspecified, but thereis a sequence point before the actual call.

The Previous Program
▶ is undefined (why?)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 41 / 140

Expressions
Order of Evaluation Matters Because
▶ of side-effects
▶ of finite arithmetic: a+ b − c with a = MAX_INT, b < c

Order of Evaluation of Expressions
▶ in most languages and for most operations is undefined (to allowfor compiler optimization)
▶ is fixed for conditional expressions and at least some booleanoperations (in C: && and || for e.g.)

Advices for Writing Correct Programs
▶ know the semantics of your language!
▶ being as explicit as possible using parenthesis, . . .
▶ avoid side effects in expressions

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 42 / 140

Outline

2 Topics in Control StructuresExpressions and CommandsSequence Control CommandsRecursionSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 43 / 140

Sequence Control Commands

Explicit Sequence Control
▶ Sequential Command: ;
▶ Composite Command: block of lists of commands

▶ C-like: { ... }
▶ Pascal-like: begin ... end

▶ goto

▶ Other: break, continue, return
Conditional and Iterative Commands
▶ Conditional Commands: Textbook section 6.3.2
▶ Iterative Commands: Textbook section 6.3.3

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 44 / 140

Structured Programming

Debate in the 70s
▶ Related to the rejection of the goto statement:Edsger W. Dijkstra. 1968. Letters to the editor: go to statementconsidered harmful. Commun. ACM 11, 3 (March 1968), 147-148.
▶ Prescribes programming language features and a programmingmethodology

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 45 / 140

http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/362929.362947

Structured Programming
▶ Top-down or hierarchical design of programs
▶ Code modularisation:

▶ procedures and functions
▶ modules

▶ Meaningful names and comments
▶ Use of structured data types (e.g. records)
▶ Use of structured control constructs:

▶ a single entry point
▶ a single exit point

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 46 / 140

Outline

2 Topics in Control StructuresExpressions and CommandsSequence Control CommandsRecursionSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 47 / 140

Recursion

Definition (Informal)
▶ A recursive procedure is a procedure whose body contains a call toitself
▶ Recursion can be indirect: two (or more) procedures can bemutually recursive

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 48 / 140

Mathematical Definitions

No Total Function f : N → N Defined by{
f (0) = 0

f (n) = f (n) + 1 for n > 0

No Unique Function Defined by
f (1) = f (1)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 49 / 140

Valid Recursive Procedure Definitions

Non Terminating
int f(int n){ return (n == 0)? 1 : (f(n)+1); }

Non Terminating
int f(int n) {

if (n==1) return f(1);

}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 50 / 140

Execution

factorial
int fact (int n){if (n≤1)return 1;elsereturn n*fact(n−1);}

factorial version 2
int f (int n, int res){if (n≤1)return res;elsereturn f(n−1, n*res);}int fact (int n){return f(n, 1);}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 51 / 140

Tail Recursion

Definition (Tail Recursion)
▶ Let f be a function which, in its body, contains a call to a function g(different from f or equal to f).
▶ The call of g is said to be a tail call if the function f returns the valuereturned by g without having to perform any other computation.
▶ We say that the function f is tail recursive if all the recursive callspresent in f are tail calls.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 52 / 140

Iteration and Recursion

Tail Recursion
▶ Memory occupation can be optimized
▶ But is not always optimizedTo check: a non terminating tail recursive function

Iteration or Recursion
▶ Iteration more natural for arrays, matrices, tables
▶ Recursion more natural for symbolic structures (lists, trees)
▶ Tail recursive functions can be as efficient as loops

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 53 / 140

Outline

2 Topics in Control StructuresExpressions and CommandsSequence Control CommandsRecursionSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 54 / 140

Summary

▶ Distinction expression / command (or instruction)
▶ Expressions: problems related to evaluation order
▶ Commands/Instructions:

▶ overview of existing commands
▶ structured programming
▶ recursion

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 55 / 140

Outline
1 Names and Environments
2 Topics in Control Structures
3 Topics in Control AbstractionControl AbstractionsProcedures and FunctionsParameter Passing ModesSummary
4 Topics in Structuring Data
5 Memory Management

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 56 / 140

Reference
▶ Textbook Chapter 7

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 57 / 140

Outline

3 Topics in Control AbstractionControl AbstractionsProcedures and FunctionsParameter Passing ModesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 58 / 140

Control Abstractions

Subprograms
▶ Provide control abstraction: functions and procedures
▶ Higher-Order Functions:

▶ Functions as parameter
▶ Functions as result
▶ Textbook section 7.2

Exceptions
▶ Textbook section 7.3

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 59 / 140

Outline

3 Topics in Control AbstractionControl AbstractionsProcedures and FunctionsParameter Passing ModesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 60 / 140

Procedures and Functions

Vocabulary
int r;

int fact(int n){

return (n≤0)?1:(n*fact(n-1));

}

void main(void){

r = fact(6);

printf("fact(6) = \%d", r);

}

▶ Header
▶ Formal parameters
▶ Actual parameters
▶ Return value
▶ Non local environment

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 61 / 140

Procedures and Functions
Functional Abstraction
Software component:
▶ provides services to its environment
▶ clients are not interested in how they are implemented
▶ clients are interested in how to use them

Subprograms as components:
▶ clients not interested by the body
▶ clients interested by the header
▶ real functional abstraction:possible to substitute a function by another one with the sameheader and semantics
▶ procedures/functions in PL only provide partial support forfunctional abstraction

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 62 / 140

Outline

3 Topics in Control AbstractionControl AbstractionsProcedures and FunctionsParameter Passing ModesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 63 / 140

void write_a(const int t[], int size){assert(size >=0);printf ("[");for(int i =0; i <size; i ++)printf ("%d ", t[i]);printf ("]\n");}void to_zero(int t[], int size){assert(size >=0);for(int i =0; i <size; i ++)t[i] = 0;}void swap(int x, int y){ int tmp = x; x=y; y=tmp; }int main(char ** argv, int argc){ int t[] = { 1, 2, 3, 4, 5 };swap(t[0], t[1]); write_a(t , 5);to_zero(t , 5); write_a(t , 5);}

program parameters;

const size = 5;

type arr5 = array [1..size] of integer;

procedure write_a (const t: arr5);

var i : 1..size;

begin

write('[');

for i:=1 to size do

write(t[i],' ');

writeln(']')

end;

procedure to_zero(t : arr5);

var i : 1..size;

begin

for i := 1 to size do

t[i] := 0;

end;

procedure swap(var x : integer;

var y : integer);

var tmp : integer;

begin tmp:=x; x:=y; y:=tmp end;

var t: arr5 = (1, 2, 3, 4, 5);

begin

swap(t[1],t[2]); write_a(t);

to_zero(t); write_a(t);

end.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 64 / 140

def to_zero(a):

for i in range(0,len(a)):

a[i] = 0;

def swap(x, y):

tmp=x;

x=y;

y=tmp;

a = [1, 2, 3, 4, 5];

swap(a[0], a[1]); print(a);

to_zero(a); print(a);

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 65 / 140

The examples

▶ C: [1,2,3,4,5] and [0,0,0,0,0]Pass-by-Value but the value of an array is a reference to its first cell
▶ Pascal : [2,1,3,4,5] and [2,1,3,4,5]Pass-by-Value by default, Pass-by-Reference with var, and thevalue of an array is the sequence of the values of its cells
▶ Python: [1,2,3,4,5] and [0,0,0,0,0]Pass-by-Value but the value of an array is a reference to its first cell

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 66 / 140

#include <iostream>

using namespace std;

void swap(int* x, int* y)

{

int tmp = *x;

*x = *y;

*y = tmp;

}

int main()

{

int a = 0, b = 42;

cout << "a = " << a

<< " b = " << b << "\n";

swap(&a, &b);

cout << "a = " << a

<< " b = " << b << "\n";

}

#include <iostream>

using namespace std;

void swap(int & x, int & y)

{

int tmp = x;

x = y;

y = tmp;

}

int main()

{

int a = 0, b = 42;

cout << "a = " << a

<< " b = " << b << "\n";

swap(a, b);

cout << "a = " << a

<< " b = " << b << "\n";

}

In both examples, the values are swapped: left, pass-by-value with thevalue is an address, right, pass-by-reference
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 67 / 140

Parameter Passing Modes

Pass by Value
▶ Actual parameters are evaluated
▶ The values are used to initialize the formal parameters
▶ Formal parameters are local variables
▶ Advantages: fast for scalar, protection
▶ Disadvantages: copy, additional memory

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 68 / 140

Parameter Passing Modes

Pass by Reference
▶ A formal parameter is an alias for its corresponding actualparameter
▶ Advantage: no copy, no additional memory
▶ Disadvantage: indirection, no protection

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 69 / 140

Parameter Passing Modes

Pass by Value and Pointers/References
In C, Java, C++: it is the value of the pointer/reference (i.e. anabstraction of a memory address) that is copied, not the value pointedto.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 70 / 140

Parameter Passing Modes

Pass by Constant
▶ Like call by value
▶ The PL implementation checks that no assignment is made
▶ It no assignment made, passing the reference is safe

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 71 / 140

Parameter Passing Modes

Pass by Result
▶ Only for output parameters
▶ The parameter should be a l-value (something that can be assigned)
▶ The body of the subprograms computes the result in a localvariable that is then copied back to the actual parameter

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 72 / 140

Parameter Passing Modes

Pass by Value-Result
▶ Pass by Value for the entry
▶ Pass be Results for the exit

Pass by Value-Result and Pass by Reference
▶ Are they equivalent?

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 73 / 140

Parameter Passing Modes

Pass by Name
▶ In functional programming: Haskell
▶ In imperative languages too: Algol
▶ No current imperative PL supports CbN

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 74 / 140

Outline

3 Topics in Control AbstractionControl AbstractionsProcedures and FunctionsParameter Passing ModesSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 75 / 140

Summary

▶ the concept of procedure
▶ parameter passing methods:

▶ by value
▶ by reference
▶ by constant
▶ by result
▶ by value/result
▶ by name

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 76 / 140

Outline
1 Names and Environments
2 Topics in Control Structures
3 Topics in Control Abstraction
4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary
5 Memory Management

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 77 / 140

Reference
▶ Textbook Chapter 8

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 78 / 140

Outline

4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 79 / 140

Types
Definition (Data Type)
A data type is a homogeneous collection of values, effectivelypresented, equipped with a set of operations which manipulate thesevalues

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 80 / 140

Types

Data types are used
1. At the design level, as support for the conceptual organisation

2. At the program level, as support for correctness

3. At the translation level, as support for the implementation.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 81 / 140

Type Systems
Definition (Type System)
A type system is a tractable syntactic method for proving the absence ofcertain program behaviors by classifying phrases according to the kindsof values they compute.

B. Pierce, Types and Programming Languages. MIT Press, 2002

A type system consists of
▶ Predefined types of the language
▶ Mechanisms to define new types
▶ Mechanisms to control the use of types:

▶ Equivalence rules: when are two types equal?
▶ Compatibility
▶ (Type inference)

▶ How are types checked: statically or dynamically?

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 82 / 140

Type Systems
Definition (Type System)
A type system is a tractable syntactic method for proving the absence ofcertain program behaviors by classifying phrases according to the kindsof values they compute.

B. Pierce, Types and Programming Languages. MIT Press, 2002
A type system consists of
▶ Predefined types of the language
▶ Mechanisms to define new types
▶ Mechanisms to control the use of types:

▶ Equivalence rules: when are two types equal?
▶ Compatibility
▶ (Type inference)

▶ How are types checked: statically or dynamically?
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 82 / 140

Type Systems

Type Safety
A type system (and its associated language) is type safe (or stronglytyped) when no program during its execution can generate a nonsignaled error caused by a type violation
Kind of Values
Denotable : they can be given a name
Expressible : they can be the result of a complex expression

Storable : they can be stored in a variable

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 83 / 140

Dynamic Checking
Pros:
▶ some checks can only (simply) be done at runtime
▶ compilation is faster

Cons:
▶ Execution is slower
▶ Additional memory is required

Static Checking
Pros:
▶ type errors are detected before execution
▶ better memory usage
▶ faster execution

Cons:
▶ compilation is slower
▶ good programs may be rejected

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 84 / 140

Outline

4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 85 / 140

Scalar Types
Booleans
▶ Not always expressible (no boolean type in C)
▶ If expressible, not always denotable or storable (e.g. W 0 andW 1)

Characters
▶ The character set may depend on the language: ASCII, Unicode
▶ The operations strongly depend on the langauge
▶ Usually denotable, expressible, storable

Integers
▶ Values: a finite number, between [−2

t , 2t − 1] for typical values of t(usually 8, 16, 32, 64, sometimes 31, e.g. OCaml)
▶ Sometimes unbounded integers: Scheme

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 86 / 140

Scalar Type: Floating Point Numbers

What does this program prints?
class Floating{public static void main(String [] a){ double x = 0;for(int i = 0; i <8; i ++){x += 0.1;System.out.println (x);}}}

0.1

0.2

0.30000000000000004

0.4

0.5

0.6

0.7

0.7999999999999999

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 87 / 140

Scalar Type: Floating Point Numbers

What does this program prints?
class Floating{public static void main(String [] a){ double x = 0;for(int i = 0; i <8; i ++){x += 0.1;System.out.println (x);}}}

0.1

0.2

0.30000000000000004

0.4

0.5

0.6

0.7

0.7999999999999999

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 87 / 140

Scalar Type: void/unit
Values
▶ In some languages, an empty type void): there is no expressiblevalues of this type, values of this type are not denotable, notstorable: C, Java
▶ Type unit: only one value, usually written ’()’. Usually denotable,expressible, storable.

▶ OCaml: unit, ()
▶ Racket: the value is #<void>, the result of function void that doesn’ttake any argument. Procedures such as display return #<void>

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 88 / 140

Outline

4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 89 / 140

Composite Types

Definition (Composite Type)
A composite type is a type obtained by combining other types.

Common Composite Types
▶ array
▶ structure
▶ object/class
▶ pointers/references

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 90 / 140

Composite Types

Definition (Composite Type)
A composite type is a type obtained by combining other types.
Common Composite Types
▶ array
▶ structure
▶ object/class
▶ pointers/references

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 90 / 140

Records

Definition (Record)
▶ A record is a (generally ordered) finite collection of named typescalled fields
▶ In imperative languages each field behaves like a variable of thesame type
▶ In functional languages, records are cartesian products but wherenames can be used to access components of tuples

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 91 / 140

Records: Example in Scheme

(define-record-type point (fields x y))

The following procedures are automatically defined:
(make-point x y) ; constructor

(point? obj) ; predicate

(point-x p) ; accessor for field x

(point-y p) ; accessor for field y

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 92 / 140

Records: Examples

What does this program print?
typedef struct { float x; float y; } point;

int main(void)

{

point p1, p2;

p1.x = 0.0; p1.y = 1.0;

p2.x = 0.0; p2.y = 1.0;

printf("%d \n", p1==p2);

}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 93 / 140

Variants Records and Unions
Definition (Variant Record and Union)
▶ A particular form of record is that in which some fields are mutuallyexclusive. We talk of variant record in this case.
▶ In C a union is a collection of fields that share the same area ofstorage and such that only one is active at a time

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 94 / 140

Variants and Unions
Example
#include "stdio. h"typedef enum { red, green, blue } color;typedef enum { two_D, colored, three_D } kind;typedef struct {float x; float y;kind k;union { color c; float z; };} point;void main(int argv, char ** argc){ point p;p.k = colored;p.x = 0; p.y = 0; p.c = red;printf ("(x=%f, y=%f, z=%f)\n", p.x, p.y, p.z);}

Variant/Unioncan break typesafety
▶ In C, C++,Pascal, . . .
▶ Type safetypreserved inAda, OCaml,Reason, . . .

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 95 / 140

Variants and Unions
Example
#include "stdio. h"typedef enum { red, green, blue } color;typedef enum { two_D, colored, three_D } kind;typedef struct {float x; float y;kind k;union { color c; float z; };} point;void main(int argv, char ** argc){ point p;p.k = colored;p.x = 0; p.y = 0; p.c = red;printf ("(x=%f, y=%f, z=%f)\n", p.x, p.y, p.z);}

Variant/Unioncan break typesafety
▶ In C, C++,Pascal, . . .
▶ Type safetypreserved inAda, OCaml,Reason, . . .

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 95 / 140

Arrays
Definition (Array)
▶ An array is an ordered homogeneous collection of data elements
▶ Each element is identified by its position in the collection
▶ Usually the elements should be of the same type"

Design Issues
▶ What are the types for positions?
▶ Are ranges checked?
▶ When does allocation take place?
▶ Multidimensional arrays?
▶ Non rectangular arrays?
▶ Initialization?

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 96 / 140

Arrays

Reference to an array element

▶ name of the collection + subscript(s)/indice(s) for position(s)
▶ C-like languages: a[i][j]
▶ Ada: a(i,j)
▶ OCaml: a.(i).(j)
▶ Perl: for array a, first element: $a[0]

Types for positions
▶ C-like, OCaml-like: integer numbers (from 0)
▶ Pascal/Ada: integer ranges and enumeration types

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 97 / 140

Arrays

Reference to an array element
▶ name of the collection + subscript(s)/indice(s) for position(s)
▶ C-like languages: a[i][j]
▶ Ada: a(i,j)
▶ OCaml: a.(i).(j)
▶ Perl: for array a, first element: $a[0]

Types for positions

▶ C-like, OCaml-like: integer numbers (from 0)
▶ Pascal/Ada: integer ranges and enumeration types

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 97 / 140

Arrays

Reference to an array element
▶ name of the collection + subscript(s)/indice(s) for position(s)
▶ C-like languages: a[i][j]
▶ Ada: a(i,j)
▶ OCaml: a.(i).(j)
▶ Perl: for array a, first element: $a[0]

Types for positions
▶ C-like, OCaml-like: integer numbers (from 0)
▶ Pascal/Ada: integer ranges and enumeration types

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 97 / 140

Arrays

Memory Allocation

▶ Static array: static storage, static position range
▶ Fixed stack-dynamic array: allocation at declaration elaboration,static position range
▶ Stack-dynamic array: allocation and position range at declarationelaboration
▶ Fixed heap-dynamic array: same as previous but allocated in theheap
▶ Heap-dynamic array: size can change during the lifetime of thearray

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 98 / 140

Arrays

Memory Allocation
▶ Static array: static storage, static position range
▶ Fixed stack-dynamic array: allocation at declaration elaboration,static position range
▶ Stack-dynamic array: allocation and position range at declarationelaboration
▶ Fixed heap-dynamic array: same as previous but allocated in theheap
▶ Heap-dynamic array: size can change during the lifetime of thearray

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 98 / 140

Arrays
Examples
▶ Static:
▶ Fixed stack-dynamic:
▶ Stack-dynamic array:
▶ Fixed heap-dynamic:
▶ Heap-dynamic:

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 99 / 140

Arrays

Shapes
▶ Regular/rectangular array: the rows have the same size, thecolumns have the same size
▶ Jagged array: the row may have a different size

▶ C: rectangular (jagged with pointers and malloc)
▶ C#/Java/ML: jagged arrays (basically array of arrays rather thanmultidimensional)
▶ C++, Ada: both

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 100 / 140

Arrays

Operations

In most languages:
▶ access to an array element
▶ (length)

Higher-level language:
▶ Operations on array as a whole
▶ Example: APL, Reason with higher-order functions
▶ Example: libraries for C++ using overloading
▶ Much easier to grasp quickly the global structure of an algorithm

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 101 / 140

Arrays

Operations
In most languages:
▶ access to an array element
▶ (length)

Higher-level language:
▶ Operations on array as a whole
▶ Example: APL, Reason with higher-order functions
▶ Example: libraries for C++ using overloading
▶ Much easier to grasp quickly the global structure of an algorithm

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 101 / 140

Arrays

Operations
In most languages:
▶ access to an array element
▶ (length)

Higher-level language:
▶ Operations on array as a whole
▶ Example: APL, Reason with higher-order functions
▶ Example: libraries for C++ using overloading
▶ Much easier to grasp quickly the global structure of an algorithm

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 101 / 140

Arrays

Bound Checks
▶ At runtime:

▶ Java, Ada, C#, Python, Scheme, . . .
▶ No check: C, C++
▶ Compiler switch: OCaml

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 102 / 140

Pointers Types and References
Definition (l-value)
A l-value is a value that represents a location in memory
Definition (Reference)
▶ In some languages, a variable does not contain directly a value but al-value. The value is usual in the heap at the location denoted bythe l-value.
▶ In Java:

▶ variables for basic types are containers
▶ variables for objects are references

Definition (Pointer)
▶ Some language do not have references, but can explicity use valuesof a pointer type
▶ Values of a pointer type are l-values

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 103 / 140

Pointers Types and Reference
Design Issues
▶ References or pointer types?
▶ Typed pointers or untyped pointers?
▶ Pointer operations:

▶ deferencing
▶ pointer arithmetic

▶ Related memory operations:
▶ memory allocation
▶ memory deallocation

▶ Main problem: pointer to unallocated memory:
▶ to null
▶ to memory non longer allocated (dangling pointer)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 104 / 140

Outline

4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 105 / 140

Type Equivalence

When two formally different types are equal?
▶ Equivalence by name: only when they have the same nameVariant: weak equivalence by name (aliases are considered equal)Example: Pascal

type T1 = 1..10;

type T2 = 1..10;

type T3 = int;

type T4 = int;

▶ Equivalence by structure

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 106 / 140

Structural Equivalence

Definition (Structural Equivalence)
Structural equivalence of types is the (least) equivalence relationsatisfying the following properties:
▶ The name of a type is equivalent to itself
▶ If a type T is introduced with the definition type T = expression(or equivalent definition in other syntax), T is equivalent to

expression

▶ If two types are constructed by applying the same type constructorto equivalent types, then the two types are equivalent.

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 107 / 140

Outline

4 Topics in Structuring DataData Types and Type SystemsScalar TypesComposite TypesType EquivalenceSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 108 / 140

Summary
▶ Definition of type as a set of values and operations and the role oftypes in design, implementation and execution of programs
▶ Type systems as the set of constructs and mechanisms thatregulate and define the use of types in a programming language
▶ The distinction between dynamic and static type checking
▶ The concept of type-safe systems, that is safe with respect to types
▶ The primary scalar types, some of which are discrete types
▶ The primary composite types, among which we have discussedrecords, variant records and unions, arrays and pointers: for each ofthese types, we have also presented the primary storage techniques
▶ The concept of type equivalence, distinguishing betweenequivalence by name and structural equivalence

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 109 / 140

Outline
1 Names and Environments
2 Topics in Control Structures
3 Topics in Control Abstraction
4 Topics in Structuring Data
5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 110 / 140

Outline

5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 111 / 140

Static and Dynamic Memory Management

Low Level Languages
▶ Simple
▶ Static: program + data loaded into memory before execution begins

High-Level Languages
▶ More complicated
▶ Constraints depend on the language features

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 112 / 140

Recursion and Memory Allocation
Recursion
int fib (int n) {

if (n == 0)

return 1;

else if (n == 1)

return 1;

else

return fib(n-1) +

fib(n-2);

}

▶ Number of active procedures dependson values known only at runtime
▶ Each call requires memory space for:

▶ parameters
▶ intermediate results
▶ return addresses
▶ . . .

▶ Block: Last In First Out
⇒ block activation stack

Memory Allocation
▶ Explicit memory allocation/deallocation (for e.g. C malloc/free)
▶ Calls can alternate in any order⇒ not possible to use a stack
▶ Use of a structure called heap

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 113 / 140

Outline

5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 114 / 140

Static Memory Management
Elements that can be statically allocated
▶ Global variables
▶ Procedures instructions
▶ Constants (if non dependent on values known at runtime)
▶ Compiler generated tables for runtime support:

▶ name handling
▶ type checking
▶ garbage collection
▶ . . .

▶ Language without recursion:
▶ memory for blocks and procedure (sub-routines) calls
▶ it works because without recursion and without parallelism, only onecall per procedure can be active at a given time

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 115 / 140

Static Memory Management
94 5 Memory Management

Fig. 5.1 Static memory
management

space required to store the information local to each block using a stack. We will
see an example.

Example 5.2 Let us consider the following program:

A:{int a = 1;
int b = 0;

B:{int c = 3;
int b = 3;
}

b=a+1;
}

At runtime, when block A is entered, a push operation allocates a space large
enough to hold the variables a and b, as shown in Fig. 5.2. When block B is entered,
we have to allocate a new space on the stack for the variables c and b (recall that
the inner variable b is different from the outer one) and therefore the situation, after
this second allocation, is that shown in Fig. 5.3. When block B exits, on the other
hand, it is necessary to perform a pop operation to deallocate the space that had
been reserved for the block from the stack. The situation after such a deallocation
and after the assignment is shown in Fig. 5.4. Analogously, when block A exits, it
will be necessary to perform another pop to deallocate the space for A as well.

The case of procedures is analogous and we consider it in Sect. 5.3.2.
The memory space, allocated on the stack, dedicated to an in-line block or to an

activation of a procedure is called the activation record, or frame. Note that an acti-

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 116 / 140

Outline

5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 117 / 140

Dynamic Memory Management using Stacks
Example of Activation Record/Frame

A:{int a = 1;int b = 0;B:{int c = 3;int b = 3;}b=a+1;}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 118 / 140

Dynamic Memory Management using Stacks
Example of Activation Record/Frame

A:{int a = 1;int b = 0;B:{int c = 3;int b = 3;}b=a+1;}

5.3 Dynamic Memory Management Using Stacks 95

Fig. 5.2 Allocation of an
activation record for block A
in Example 5.2

Fig. 5.3 Allocation of
activation records for
blocks A and B in
Example 5.2

Fig. 5.4 Organisation after
the execution of the
assignment in Example 5.2

vation record is associated with a specific activation of a procedure (one is created
when the procedure is called) and not with the declaration of a procedure. The val-
ues that must be stored in an activation record (local variables, temporary variables,
etc.) are indeed different for the different calls on the same procedure.

The stack on which activation records are stored is called the runtime (or system)
stack.

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 118 / 140

Dynamic Memory Management using Stacks
Example of Activation Record/Frame

A:{int a = 1;int b = 0;B:{int c = 3;int b = 3;}b=a+1;}

5.3 Dynamic Memory Management Using Stacks 95

Fig. 5.2 Allocation of an
activation record for block A
in Example 5.2

Fig. 5.3 Allocation of
activation records for
blocks A and B in
Example 5.2

Fig. 5.4 Organisation after
the execution of the
assignment in Example 5.2

vation record is associated with a specific activation of a procedure (one is created
when the procedure is called) and not with the declaration of a procedure. The val-
ues that must be stored in an activation record (local variables, temporary variables,
etc.) are indeed different for the different calls on the same procedure.

The stack on which activation records are stored is called the runtime (or system)
stack.

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 118 / 140

Dynamic Memory Management using Stacks
Example of Activation Record/Frame

A:{int a = 1;int b = 0;B:{int c = 3;int b = 3;}b=a+1;}

5.3 Dynamic Memory Management Using Stacks 95

Fig. 5.2 Allocation of an
activation record for block A
in Example 5.2

Fig. 5.3 Allocation of
activation records for
blocks A and B in
Example 5.2

Fig. 5.4 Organisation after
the execution of the
assignment in Example 5.2

vation record is associated with a specific activation of a procedure (one is created
when the procedure is called) and not with the declaration of a procedure. The val-
ues that must be stored in an activation record (local variables, temporary variables,
etc.) are indeed different for the different calls on the same procedure.

The stack on which activation records are stored is called the runtime (or system)
stack.

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 118 / 140

Activation Records for In-line Blocks
Activation Record
▶ Intermediate resultsWhen calculations must be performed, it canbe necessary to store intermediate results, even if the programmerdoes not assign an explicit name to them

Example

{

int a = 3;

b = (a+x) / (x+y);

}

5.3 Dynamic Memory Management Using Stacks 97

Fig. 5.6 An activation record
with space for intermediate
results

part which is defined at runtime. We will examine this in detail in Chap. 8 when
discussing arrays.

Dynamic chain pointer This field stores a pointer to the previous activation record
on the stack (or to the last activation record created). This information is necessary
because, in general, activation records have different sizes. Some authors call this
pointer the dynamic link or control link. The set of links implemented by these
pointers is called the dynamic chain.

5.3.2 Activation Records for Procedures

The case of procedures and functions5 is analogous to that of in-line blocks but with
some additional complications due to the fact that, when a procedure is activated,
it is necessary to store a greater amount of information to manage correctly the
control flow. The structure of a generic activation record for a procedure is shown
in Fig. 5.7. Recall that a function, unlike a procedure, returns a value to the caller
when it terminates its execution. Activation records for the two cases are therefore
identical with the exception that, for functions, the activation record must also keep
tabs on the memory location in which the function stores its return value.

Let us now look in detail at the various fields of an activation record:

Intermediate results, local variables, dynamic chain pointer The same as for
in-line blocks.

Static chain pointer This stores the information needed to implement the static
scope rules described in Sect. 5.5.1.

Return address Contains the address of the first instruction to execute after the call
to the current procedure/function has terminated execution.

Returned result Present only in functions. Contains the address of the memory
location where the subprogram stores the value to be returned by the function when
it terminates. This memory location is inside the caller’s activation record.

Parameters The values of actual parameters used to call the procedure or function
are stored here.

The organisation of the different fields of the activation record varies from im-
plementation to implementation. The dynamic chain pointer and, in general, every

5Here and below, we will almost always use the terms “function” and “procedure” as synonyms.
Although there are is no agreement between authors, the term “procedure” should denote a sub-
program which does not directly return a value, while a function is a subprogram that returns one.

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 119 / 140

Activation Records for In-line Blocks
Activation Record
▶ Local Variables

▶ Memory size: depends on the type and number of variables
▶ Size information: in general determined at compiled time
▶ Size information: but in some cases at runtime(for example dynamic arrays)

▶ Dynamic chain pointer: pointer to the previous activation record onthe stack (or the last activation record created)
Remark: compiled languages
▶ both local variables and intermediate results are stored in registers insteadof the stack, for improving performances
▶ there is a limited number of registers, so both the stack and registers maybe used
▶ this phase of compilation is named register allocation and is based on analgorithm of graph coloring

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 120 / 140

Activation Records for Procedure Blocks
Activation Record
▶ Intermediate results, local variables,

dynamic chain pointer: as in-line blocks
▶ Return address: contains the address of thefirst instruction to execute after the call tothe current procedure/function hasterminated execution
▶ Returned result: (only for functions)contains the address (inside the caller’sactivation record) of the memory locationwhere the subprogram stores the value tobe returned when the function terminates
▶ Parameters: the values of actualparameters used to call the procedure orfunction are stored here

98 5 Memory Management

Fig. 5.7 Structure of the
activation record for a
procedure

pointer to an activation record, points to a fixed (usually central) area of the activa-
tion record. The addresses of the different fields are obtained, therefore, by adding
a negative or positive offset to the value of the pointer.

Variable names are not normally stored in activation records and the compiler
substitutes references to local variables for addresses relative to a fixed position in
(i.e., an offset into) the activation record for the block in which the variables are
declared. This is possible because the position of a declaration inside a block is
fixed statically and the compiler can therefore associate every local variable with an
exact position inside the activation record.

In the case of references to non-local variables, also, as we will see when we dis-
cuss scope rules, it is possible to use mechanisms that avoid storing names and there-
fore avoid having to perform a runtime name-based search through the activation-
record stack in order to resolve a reference.

Finally, modern compilers often optimise the code they produce and save some
information in registers instead of in the activation record. For simplicity, in this
book, we will not consider these optimisations. In any case for greater clarity, in the
examples, we will assume that variable names are stored in activation records.

To conclude, let us note that all the observations that we have made about variable
names, their accessibility and storage in activation records, can be extended to other
kinds of denotable object.

frederic.loulergue@nau.edu

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 121 / 140

Recursion and Activation Records
factorial
int fact (int n){if (n≤1)return 1;elsereturn n*fact(n−1);}

Activation Record
Dynamic Chain PtrAddress for Result
nIntermediate Result

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 122 / 140

Recursion and Activation Records
factorial version 2
int f (int n, int res){if (n≤1)return res;elsereturn f(n−1, n*res);}int fact (int n){return f(n, 1);}

Activation Record for f
Dynamic Chain PtrAddress for Result
n

res

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 123 / 140

Stack Management

5.3 Dynamic Memory Management Using Stacks 99

5.3.3 Stack Management

Figure 5.8 shows the structure of a system stack which we assume growing down-
wards (the direction of stack growth varies according to the implementation). As
shown in the figure, an external pointer to the stack points to the last activation
record on the stack (pointing to a predetermined area of the activation record which
is used as a base for calculating the offsets used to access local names). This pointer,
which we call the activation record pointer, is also called the frame or current envi-
ronment pointer (because environments are implemented using activation records).
In the figure, we have also indicated where the first free location is. This second
pointer, used in some implementations, can, in principle, also be omitted if the
activation-record pointer always points to a position that is at a pre-defined distance
from the start of the free area on the stack.

Activation records are stored on and removed from the stack at runtime. When a
block is entered or a procedure is called, the associated activation record is pushed
onto the stack; it is later removed from the stack when the block is exited or when
the procedure terminates.

The runtime management of the system stack is implemented by code fragments
which the compiler (or interpreter) inserts immediately before and after the call to a
procedure or before the start and after the end of a block.

Let us examine in detail what happens in the case of procedures, given that the
case of in-line blocks is only a simplification.

First of all, let us clarify the terminology that we are using. We use “caller” and
“callee” to indicate, respectively, the program or procedure that performs a call (of
a procedure) and the procedure that has been called.

Fig. 5.8 The stack of activation records

frederic.loulergue@nau.edu

Activation RecordStack
▶ Act Rec Pointer:the currentframe/environ-ment
▶ Ptr Stack Top:optional ifpredefined size ofactivation records
▶ stackmanagement:code fragmentsinserted beforeand after aprocedure call orstart/end of inlineblock

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 124 / 140

Stack Management

Caller/Callee
▶ Caller: program/procedure that performs a call
▶ Callee: procedure that has been called
▶ Both perform part of the stack management
▶ In the caller: calling sequence include the call itself and codeimmediately before and after
▶ In the callee:

▶ prologue: to be executed just after the call
▶ epilogue: when the procedure ends execution

▶ Exact distribution of code: depends on the implementation, foroptimization the callee should have most of the code

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 125 / 140

Stack Management

Tasks at the Start of the Call
▶ Allocation of stack space to store the new activation record
▶ Modification of program counter to give the control to the callee,the incremented old value should be saved as the return address
▶ Modification of activation record pointer to set the currentenvironment
▶ Parameter passing: done by the caller
▶ Register save, for e.g. the old activation record pointer

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 126 / 140

Stack Management

Tasks at the End of the Call
▶ Update of program counter to return the control to the caller
▶ Value return: usually should be stored in the activation record ofthe caller (address accessible from the activation record of thecallee)
▶ Return of registers: previsouly saved registers are restored
▶ Deallocation of stack space

Remark
We omitted the data structures necessary for scope rules(see textbook section 5.5)

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 127 / 140

Outline

5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 128 / 140

Example of C Program
1 int *p, *q; /* p,q NULL pointers to integers */

2 p = malloc (sizeof (int));

3 /* allocates the memory pointed to by p */

4 q = malloc (sizeof (int));

5 /* allocates the memory pointed to by q */

6 *p = 0; /* dereferences and assigns */

7 *q = 1; /* dereferences and assigns */

8 free(p); /* deallocates the memory pointed to by p */

9 free(q); /* deallocates the memory pointed to by q */

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 129 / 140

Fixed Sized Blocks

Free List
▶ Linked list of addresses of free blocks
▶ Allocation: removes the first element of the list and return theaddress
▶ Deallocation: stores back the deallocated address at the beginningof the list

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 130 / 140

Fixed Sized Blocks
102 5 Memory Management

Fig. 5.9 Free list in a heap
with fixed-size blocks

Fig. 5.10 Free list for heap
of fixed-size blocks after
allocation of some memory.
Grey blocks are allocated (in
use)

requested the memory and the pointer to the free list is updated so that it points to
the next element.

When memory is, on the other hand, freed or deallocated (for example using
free), the freed block is linked again to the head of the free list. The situation after
some memory allocations is shown in Fig. 5.10. Conceptually, therefore, manage-
ment of a heap with fixed-size blocks is simple, provided that it is known how to
identify and reclaim the memory that must be returned to the free list easily. These
operations of identification and recovery are not obvious, as we will see below.

frederic.loulergue@nau.edu

102 5 Memory Management

Fig. 5.9 Free list in a heap
with fixed-size blocks

Fig. 5.10 Free list for heap
of fixed-size blocks after
allocation of some memory.
Grey blocks are allocated (in
use)

requested the memory and the pointer to the free list is updated so that it points to
the next element.

When memory is, on the other hand, freed or deallocated (for example using
free), the freed block is linked again to the head of the free list. The situation after
some memory allocations is shown in Fig. 5.10. Conceptually, therefore, manage-
ment of a heap with fixed-size blocks is simple, provided that it is known how to
identify and reclaim the memory that must be returned to the free list easily. These
operations of identification and recovery are not obvious, as we will see below.

frederic.loulergue@nau.edu

Free List for Heap of Fixed Size Block
In Gray: block in use

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 131 / 140

Variable-Length Blocks

Techniques
▶ An array requires a contiguous region
▶ Goal of techniques for variable-length blocks:

▶ Good memory occupation
▶ Good execution speed

⇒ rational trade-off

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 132 / 140

Variable-Length Blocks

Problems
▶ Internal fragmentation:the allocated memory islarger than therequested memory (fore.g. basic blocks 16bytes, requestedmemory 24 bytes)
▶ External fragmentation:because ofallocation/deallocationnot all free memory canbe occupied

5.4 Dynamic Management Using a Heap 103

5.4.2 Variable-Length Blocks

In the case in which the language allows the runtime allocation of variable-length
memory spaces, for example to store an array of variable dimension, fixed-length
blocks are no longer adequate. In fact the memory to be allocated can have a size
greater than the fixed block size, and the storage of an array requires a contiguous
region of memory that cannot be allocated as a series of blocks. In such cases, a
heap-based management scheme using variable-length blocks is used.

This second type of management uses different techniques, mainly defined with
the aim of increasing memory occupation and execution speed for heap management
operations (recall that they are performed at runtime and therefore impact on the
execution time of the program). As usual, these two characteristics are difficult to
reconcile and good implementations tend towards a rational compromise.

In particular, as far as memory occupancy is concerned, it is a goal to avoid the
phenomenon of memory fragmentation. So-called internal fragmentation occurs
when a block of size strictly larger than the requested by the program is allocated.
The portion of unused memory internal to the block clearly will be wasted until
the block is returned to the free list. But this is not the most serious problem. In-
deed, so-called external fragmentation is worse. This occurs when the free list is
composed of blocks of a relatively small size and for which, even if the sum of the
total available free memory is enough, the free memory cannot be effectively used.
Figure 5.11 shows an example of this problem. If we have blocks of size x and y
(words or some other unit—it has no relevance here) on the free list and we re-
quest the allocation of a block of greater size, our request cannot be satisfied despite
the fact that the total amount of free memory is greater than the amount of mem-
ory that has been requested. The memory allocation techniques tend therefore to

Fig. 5.11 External fragmentation

frederic.loulergue@nau.eduFrédéric Loulergue Compilation – ©Frédéric Loulergue 2022 133 / 140

Variable-Length Blocks
Single Free List
▶ List of blocks of variable size
▶ Threshold size: s
▶ Requested memory of size n: if available block of size k ≥ n, theblock can be used:

▶ if k − n ≤ s : internal fragmentation
▶ otherwise a new block of size k − n is added to the free list

▶ Search for available blocks:
▶ First fit: first block of sufficient size (fast)
▶ Best fit: block with smallest sufficient size (memory occupation)
▶ Data structure: list ordered by block size (search faster, insertionslower)

▶ Deallocation: if adjacent blocks are free too, they are merged toavoid external fragmentation (partial compaction)
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 134 / 140

Variable-Length Blocks

Multiple Free Lists
▶ Different free lists for different sizes
▶ Sizes: static or dynamic
▶ Dynamic:

▶ Buddy system (powers of 2)
▶ Fibonacci heap

▶ If no block of a given size is available, a bigger one is split
▶ When two “buddy” blocks are free they are merged

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 135 / 140

Variable-Length Blocks
Buddy System
▶ Allocated block with size a power of 2
▶ 2

s is the smallest possible size
▶ If 2m is the memory size there are m − s + 1 free lists
▶ Free list for blocks of size 2

k is at level/index m − k
▶ Request for allocation of a block of size n:

▶ find k such that 2k−1 < n ≤ 2
k

▶ look for the first free block in the free list of index m − k
▶ if there is no free block, look for a free block in the list of theprevious level m − (k + 1), and split the obtained free block in twoblocks of size 2

k

▶ repeat if there is still no free block at level m − (k + 1)

▶ Request for deallocation of a block: if the “buddy” of thedeallocated block is free, then they are merged
Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 136 / 140

Pros and Cons

Buddy System
+ less external fragmentation than one free list
+ search for a block that fits very efficient
+ allocation/deallocation cost is low
- internal fragmentation
▶ Variants (mostly block size)
▶ Implementation details are important in practice

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 137 / 140

Memory Management: Implicit or Explicit?

In C: Explicit
▶ Memory allocation in the heap with malloc

▶ Memory deallocation in the heap with free

In Java: Implicit
▶ Memory allocation in the heap with new

▶ No explicit memory deallocation
▶ Need for automatic memory management: a GC

▶ GC = Garbage Collector
▶ GC = Glaneur de cellules

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 138 / 140

Outline

5 Memory ManagementTechniques for Memory ManagementStatic Memory ManagementDynamic Memory Management using StacksDynamic Memory Management using a HeapSummary

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 139 / 140

Summary
▶ Memory management depends on the language features
▶ Recursion requires dynamic memory management
▶ Static only memory management possible without recursion
▶ Usually a mix:

▶ static memory management for some features (e.g. global variables)
▶ dynamic memory management for others (for e.g. blocks)

▶ Stack-Based Memory Management:
▶ Activation records for in-line and procedure blocks
▶ Stack management by code fragments in the caller and callee

▶ Heap-Based Memory Management:
▶ Common techniques for fixed-size and variable-size blocks
▶ Fragmentation problem and how to limit it

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 140 / 140

	Names and Environments
	Names and Denotable Objects
	Environments and Blocks
	Scoping Rules
	Summary

	Topics in Control Structures
	Expressions and Commands
	Sequence Control Commands
	Recursion
	Summary

	Topics in Control Abstraction
	Control Abstractions
	Procedures and Functions
	Parameter Passing Modes
	Summary

	Topics in Structuring Data
	Data Types and Type Systems
	Scalar Types
	Composite Types
	Type Equivalence
	Summary

	Memory Management
	Techniques for Memory Management
	Static Memory Management
	Dynamic Memory Management using Stacks
	Dynamic Memory Management using a Heap
	Summary

