
SOM2IF15 – Compilation
Activation Records and Intermediate Representation

Frédéric Loulergue

2022



Outline

1 Activation Records / Frames

2 Intermediate Representation

3 Intermediate Representation in Java

4 Tranlation to Intermediate Representation

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 2 / 27



Activation Records / Frames

Frames during Execution
▶ Activation record = frame
▶ Stack of frames to store local variables, intermediate results, etc.for block
▶ Other names: call stack, execution stack, program stack
▶ In high-level presentations: for both inline blocks and functionbodies

Frames during Compilation
▶ data structure containing information on functions
▶ used to generate code to manage the call stack during execution

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 27



Frames

Inline blocks / Function bodies
▶ Having activation records for both inline blocks and function bodiesis conceptually correct and simpler than having activation recordsfor function bodies only
▶ In the implementation however, frames are only created forfunctions
▶ The stack structure is needed only because of recursion: it is notpossible to re-enter in an inline block without first exiting the blockif there isn’t any recursive call.
▶ Recursive call = need for a new function activation record

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 27



Structure of Functions
Version 1
int abs(int x){

if (x < 0)

return -x

else

return x

}

Version 2
int abs(int x){

var int result

if (x < 0)

result = -x

else

result = x

return result

}

Function in the Intermediate Representation
▶ one entry point
▶ one exit point

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 27



Registers
Intermediate Representation
▶ No variable declaration
▶ An infinite member of temporary registers

Functions
▶ parameters replaced by temporary registers
▶ if there is a returned result: in other temporary register

Frames
▶ during code generation, if a parameter is passed by reference, it isnot possible to use a register (we need the address, a registerdoesn’t have an address)
▶ during code generation, we need the size of each (execution) frame

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 27



The Frame Data Structure in the LUO Compiler

Frame
entryLabel label of the entry point of the function’s body
returnLabel label of the exit point
parameters list of temporary registers storing the parameters

result a temporary register storing the result, if needed
size size necessary to store the execution frame

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 7 / 27



Outline

1 Activation Records / Frames

2 Intermediate Representation

3 Intermediate Representation in Java

4 Tranlation to Intermediate Representation

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 8 / 27



Intermediate Representation

Expressions
⟨expr⟩ ::= number literal number

| regi temporary register
| regi [⟨expr⟩] memory read
| unop ⟨expr⟩ unary operation function application
| ⟨expr⟩ binop ⟨expr⟩ binary operation applicationwhere

▶ i ∈ Z
▶ unop contains -, !, length, all conversion functions
▶ binop contains all arithmetic and Boolean binary operations butNOT ++ and --

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 9 / 27



Intermediate Representation

Instructions
⟨com⟩ ::= label : a label

| regi := ⟨expr⟩ write to a register
| regi + ⟨expr⟩ := ⟨expr⟩ write in memory
| jump (⟨expr⟩) label , label conditional jump
| goto label unconditional jump
| call frame ⟨expr⟩, . . . , ⟨expr⟩ function/system call
| regi := frame ⟨expr⟩, . . . , ⟨expr⟩ function/system call

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 10 / 27



Remarks
Frames in calls
▶ In LUO, calls can be statically resolved
▶ In a language like Java, it is not possible: to know which method tocall, we need the class of the object, known only at runtime

Temporary Registers and Labels
▶ We assume we can generate always generate a fresh temporaryregister and a fresh label

Types
▶ We assume the LUO code has been type-checked
▶ Do we need type information here?

▶ Yes, at least for the memory space: byte, int, address

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 27



Remarks
Frames in calls
▶ In LUO, calls can be statically resolved
▶ In a language like Java, it is not possible: to know which method tocall, we need the class of the object, known only at runtime

Temporary Registers and Labels
▶ We assume we can generate always generate a fresh temporaryregister and a fresh label

Types
▶ We assume the LUO code has been type-checked
▶ Do we need type information here?
▶ Yes, at least for the memory space: byte, int, address

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 27



Outline

1 Activation Records / Frames

2 Intermediate Representation

3 Intermediate Representation in Java

4 Tranlation to Intermediate Representation

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 12 / 27



Intermediate Representation

Expressions
⟨expr⟩ ::= number literal number

| regi temporary register
| regi [⟨expr⟩] memory read
| unop ⟨expr⟩ unary operation function application
| ⟨expr⟩ binop ⟨expr⟩ binary operation applicationwhere

▶ i ∈ Z
▶ unop contains -, !
▶ binop contains all arithmetic and Boolean binary operations butNOT ++ and --

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 13 / 27



Intermediate Representation in Java

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 14 / 27



Intermediate Representation

Instructions
⟨com⟩ ::= label : a label

| regi := ⟨expr⟩ write to a register
| regi + ⟨expr⟩ := ⟨expr⟩ write in memory
| jump (⟨expr⟩) label , label conditional jump
| goto label unconditional jump
| call frame ⟨expr⟩, . . . , ⟨expr⟩ function/system call
| regi := frame ⟨expr⟩, . . . , ⟨expr⟩ function/system call

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 15 / 27



Intermediate Representation in Java

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 16 / 27



Outline

1 Activation Records / Frames

2 Intermediate Representation

3 Intermediate Representation in Java

4 Tranlation to Intermediate Representation

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 17 / 27



Translation of LUO Expressions
Variable
▶ Each time a variable is declared (Declaration ) it is associatedwith a fresh temporary register (in a Map <String , Register >)
▶ When translating an ExpVariable , we just lookup the register inthe map

Recursive Construction
For a ExpBinaryOperation :
▶ we compile the left argument,
▶ we compile the right argument,
▶ and we build an ir.expr.Binary using the pieces.

Not so simple:
▶ some LUO expressions are not IR expressions!
▶ they should be translated as a mix of IR expressions and commands

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 18 / 27



Translation of LUO Expressions

LUO expressions without an IR correspondence
▶ ExpFunctionCall they are IR commands
▶ ExpArrayAccess/ExpRecordAccess : MemWrite is close butthe “array”/“record” part should be a register, while it is an arbitraryexpression in LUO
▶ ExpNew , ExpString , ExpArrEnum : see TP
▶ ExpAssignop : can be removed by an AST transformation,unsupported

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 19 / 27



Translation of LUO Expressions

Function Calls (User or Predefined)
Principle of the transformation in LUO Syntax:
▶ Initial: add(x, 1) + 2

▶ Translated: int tmp = add(x,1)and the new expression is tmp + 2
In IR, assuming x 7→ reg

0
and add 7→ Frame0:

▶ LUO: add(x, 1) + 2

▶ IR command part: reg
1
:= call Frame0 reg0, 1

▶ IR expression part: reg
1
+ 2

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 20 / 27



Translation of LUO Expressions

How do we know that add 7→ Frame0?
▶ User-defined function: Frames are built by a first visitor(inner class FramesBuilder )
▶ Pre-defined functions + new + print + read: TP

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 21 / 27



Translation of LUO Expressions

Array Access
▶ Same principle
▶ A new register is introduced: contains an address
▶ A new WriteReg is introduced
▶ LUO: m[0][1]
▶ Assuming m 7→ reg

0
:

▶ Command part: reg
1
:=reg

0
[0]

▶ Expression part: reg
1
[1]

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 22 / 27



Translation to Intermediate Representation in Java
public class Result

{

private Expression expression;

private List <Command > code;

public Expression getExp () { return expression; }

public List <Command > getCode () { return code; }

public Result(Expression expression , List <Command > code){

this.expression = expression;

this.code = code;

}

public Result(Expression expression) {

this(expression , new LinkedList <>());

}

public Result(List <Command > code) {

this(null , code);

}

}

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 23 / 27



Translation of LUO Statements

Declaration
▶ Variable associated with a fresh register
▶ It there is an initialization:

▶ compilation of the expression
▶ write of this expression to the new register

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 24 / 27



Translation of LUO Statements

Return Statement
▶ Compilation of the expression
▶ Jump to the exit label of the frame
▶ It requires we know what’s the current frame: field

currentFrame

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 25 / 27



Translation of LUO Statements

Assignment Statement
▶ In LUO: x = 1 and a[0] = 1 and record
▶ In IR: two different commands: WriteReg and WriteMem

▶ For WriteMem : the address should be in the form:
reg+ ⟨expr⟩

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 26 / 27



Translation of LUO Statements
Other Statements
Next TP
Conditional

if (expr) block1 else block2 =⇒ [
jump(C(b)) L1, L2);
L1 : ; C(block1); goto L3
L2 : ; C(block2); goto L3
L3 :

]

where L1, L2 and L3 are fresh labels.
While Loops
▶ Same principles as conditional

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 27 / 27


	Activation Records / Frames
	Intermediate Representation
	Intermediate Representation in Java
	Tranlation to Intermediate Representation

