
SOM2IF15 – Compilation
Introduction

Frédéric Loulergue

2022

What is a Compiler?
A compiler is
a program that transformsa text written in a sourcelanguage into a text writtenin a target language.

Source TargetCompiler

Errors

Examples
▶ javac, gcc, ocamlc, ocamlopt, . . .
▶ latex, dot
▶ Code generation from UML models
▶ Program extraction from formal proofs (Coq, Isabelle)

SOM2IF15
We are interested in programming languages

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 2 / 16

Let’s compile a few programs

Demo
▶ gcc
▶ javac

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 3 / 16

Compilers: a vast area
▶ numerous source languages
▶ numerous target languages
▶ automata theory
▶ formal semantics
▶ algorithms (data structures, graphs, . . .)
▶ hardware architecture
▶ software architecture
▶ . . .

This Class
▶ Programming a compiler from A to Z
▶ Questions:

▶ Source language?
▶ Target language?

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 16

Compilers: a vast area
▶ numerous source languages
▶ numerous target languages
▶ automata theory
▶ formal semantics
▶ algorithms (data structures, graphs, . . .)
▶ hardware architecture
▶ software architecture
▶ . . .

This Class
▶ Programming a compiler from A to Z
▶ Questions:

▶ Source language?
▶ Target language?

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 4 / 16

Outline

1 Source Languages

2 Compilation, interpretation, virtual machines

3 Target Languages

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 5 / 16

Programming Languages and Paradigms
Imperative programming

FORTRAN
COBOL
Pascal
C
ADA 85

Lisp OCaml
Scheme Scala

 F#

Haskell

Functional Programming

Prolog
Oz
Curry

Logic Programming

 Object Oriented Programming
Smalltalk
C++
Java
C#
Python
PHP
Ruby

LUO: An Imperative Programming Language
▶ Features to be defined together

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 6 / 16

Outline

1 Source Languages

2 Compilation, interpretation, virtual machines

3 Target Languages

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 7 / 16

Compilation and Execution

Source TargetCompiler

TargetData Data

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 8 / 16

Interpretation

Source

Interpreter

Data

Data

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 9 / 16

Byte-code Compilation and Virtual Machine

Byte-code
Virtual

Machine
Data

Data

Source

Compiler

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 10 / 16

Outline

1 Source Languages

2 Compilation, interpretation, virtual machines

3 Target Languages

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 11 / 16

Last Phases of Compilers
Object Files
▶ compiler produces assembly code
▶ transformed into machine code object by the assembler

Several object files are put together by the linker that establishes linkswith the system libraries to produce an executable file
ABI - Application Binary Interface
For a given operating system and a given architecture the ABIspecifications include:
▶ data placement
▶ call conventions
▶ object file formats
▶ functions of the system libraries

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 12 / 16

Machine Code

CISC Processors – Complex Instruction Set Computer
▶ many complex instructions (variable sizes)
▶ few registers
▶ direct programming of the machine

RISC Processors – Reduced Instruction Set Computer
▶ small and regular instruction set
▶ many registers
▶ simplified and unified decoding
▶ not meant for direct programming

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 13 / 16

Byte-Code Compilation

Examples of Byte-codes and Virtual Machines
▶ P-code
▶ Byte-code-octet OCaml
▶ Byte-octet Java and the Java Virtual Machine
▶ Byte-octet Dalvik and the DVM (Android)
▶ Common Language Runtine

Available specification, assemblers

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 14 / 16

Native-code/Byte-code Compilation, Interpretation?

Comparison
Interpreter:

✓ easy to implement, to test, better interaction
✗ memory usage, execution speed

Compiler:
✓ memory usage, execution speed, error detection, optimization
✗ more complex, less flexible
▶ native-code: complex but efficient, less portable
▶ byte-code: less efficient, more portable, virtual machine to designand implement

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 15 / 16

This Class

▶ Compiler to (almost) native code
▶ Interpreter
▶ RISC processor: MIPS
▶ The SPIM simulator:

▶ Direct execution of assembly code
▶ Without the need of a operating system
▶ Very small system library for basic input/output

Frédéric Loulergue Compilation – ©Frédéric Loulergue 2022 16 / 16

	Source Languages
	Compilation, interpretation, virtual machines
	Target Languages

