
Calculabilité & Complexité
Calculabilité (1/5) : introduction

Nicolas Ollinger (LIFO, Université d’Orléans)

M1 info, Université d’Orléans — S2 2025/2026

Organisation

Cours 9 × 1h30 + 30min N. Ollinger
TD 5 × 2h M. Delacourt ← calculabilité
TD 5 × 2h M. Liedloff ← complexité

Support de cours :
https://celene.univ-orleans.fr/course/view.php?id=2106

Évaluation : Note Finale = 1
4CC+ 3

4CT

CT : examen de 2h sur Cours + TD

CC : Contrôles rapides sur le temps du TD.

1/28

https://celene.univ-orleans.fr/course/view.php?id=2106

Méthode de travail

Le contenu de ce cours est passionnant mais très formel. Ne restez
pas passifs, prenez des notes, relisez-les, posez des questions !

Lisez aussi avant de venir en cours :

• en calculabilité, le polycopié disponible sur Celene ;

• en complexité, les chapitres du livre de S. Périfel.

Résolvez et comprenez les exercices de TD !

Des références bibliographiques supplémentaires sont disponibles
sur Celene, si besoin.

2/28

Objet du cours

Partie I. Calculabilité

« Que peut-on calculer avec un ordinateur ? »

Partie II. Complexité

« Que peut-on calculer efficacement avec un ordinateur ? »

3/28

1. Calculabilité

Calculabilité

Nous présentons quelques éléments de calculabilité autour de
modèles de calcul classiques.

Un bagage classique de M1 informatique. . .

bientôt en lycée ?

extrait du programme de NSI

Ici ce sera avec formalisme théorique !

1. Calculabilité 4/28

Calculabilité

Nous présentons quelques éléments de calculabilité autour de
modèles de calcul classiques.

Un bagage classique de M1 informatique. . . bientôt en lycée ?

extrait du programme de NSI

Ici ce sera avec formalisme théorique !

1. Calculabilité 4/28

Calculabilité

Nous présentons quelques éléments de calculabilité autour de
modèles de calcul classiques.

Un bagage classique de M1 informatique. . . bientôt en lycée ?

extrait du programme de NSI

Ici ce sera avec formalisme théorique !
1. Calculabilité 4/28

Thèse de Church, Turing, Kleene, Post et al.

Théorème (Gandy 1980) Toute fonction discrète calculable par un
dispositif mécanique déterministe, régit par les règles de la
physique classique et qui satisfait les hypothèses suivantes, est
Turing-calculable : (. . .)

1. Calculabilité 5/28

Thèse de Church, Turing, Kleene, Post et al.

Théorème (Gandy 1980) Toute fonction discrète calculable par un
dispositif mécanique déterministe, régit par les règles de la
physique classique et qui satisfait les hypothèses suivantes, est
Turing-calculable : (. . .)

Thèse de Church-Turing Toute fonction calculable par une
méthode effective est Turing-calculable.

1. Calculabilité 5/28

Thèse de Church, Turing, Kleene, Post et al.

Théorème (Gandy 1980) Toute fonction discrète calculable par un
dispositif mécanique déterministe, régit par les règles de la
physique classique et qui satisfait les hypothèses suivantes, est
Turing-calculable : (. . .)

Thèse de Church-Turing Toute problème décidable par une
méthode effective est Turing-décidable.

1. Calculabilité 5/28

Thèse de Church, Turing, Kleene, Post et al.

Théorème (Gandy 1980) Toute fonction discrète calculable par un
dispositif mécanique déterministe, régit par les règles de la
physique classique et qui satisfait les hypothèses suivantes, est
Turing-calculable : (. . .)

Thèse de Church-Turing Toute problème décidable par une
méthode effective est Turing-décidable.

Corollaire Tout problème Turing-indécidable est indécidable par
toute méthode effective.

1. Calculabilité 5/28

Berger
matin

jarre ← 0
ouvrir()

soir ∧ jarre == 0
fermer()

un mouton sort
jarre++

un mouton entre
jarre--

16 000 000 000 transistors
horloge cadencée à 3 GHz

A. M. Turing. On computable
numbers with an application to
the Entscheidungsproblem. 1936

J. von Neumann. First draft of a
report on the EDVAC. 1945

S

R
Q

Q

2. Machines finies et circuits booléens

Calcul de fonction

f : A→ B

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant uniquement des portes NON-ET.

2. Machines finies et circuits booléens 10/28

Calcul de fonction

f : {0,1}m → {0,1}n

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant uniquement des portes NON-ET.

2. Machines finies et circuits booléens 10/28

Calcul de fonction

f : {0,1}m → {0,1}n
Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant uniquement des portes NON-ET.

2. Machines finies et circuits booléens 10/28

Calcul de fonction

f : {0,1}m → {0,1}n
Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.

Théorème Toute fonction binaire est calculée par un circuit
combinatoire comportant uniquement des portes NON-ET.

2. Machines finies et circuits booléens 10/28

x
y

c
d

z

Addition de trois bits avec neuf portes NON-ET

Circuits séquentiels

Que se passe-t-il lorsque le graphe du circuit comporte des cycles ?

S

R
Q

Q

On obtient des circuits séquentiels dans lesquels les sorties
dépendent des états passés :

y(t + 1) = F(x(t),y(t))

2. Machines finies et circuits booléens 12/28

Automates de Mealy
Définition Un automate de Mealy est un tuple (Q, I,O, q0, δ) où Q
est l’ensemble fini des états, I et O sont les alphabets finis
d’entrée et de sortie, q0 ∈ Q est l’état initial et δ : Q× I → Q×O
est la fonction de transition de l’automate.

I O

δ

QQ

Registre

Théorème Tout automate de Mealy peut être mis en œuvre par un
circuit séquentiel synchrone composé de portes NON-ET et de
registres mémoire.

2. Machines finies et circuits booléens 13/28

q0 q1
0

0

∣

∣

∣

∣

0 ,
0

1

∣

∣

∣

∣

1 ,
1

0

∣

∣

∣

∣

1
0

1

∣

∣

∣

∣

0 ,
1

0

∣

∣

∣

∣

0 ,
1

1

∣

∣

∣

∣

1

1

1

∣

∣

∣

∣

0

0

0

∣

∣

∣

∣

1

Addition de deux nombres binaires de longueur non bornée

Limites du calcul sans mémoire

Proposition Il n’est pas possible de multiplier deux entiers avec
le même codage.

Il suffit de considérer la famille de produits 2n × 2n = 22n et
d’utiliser un argument de pompage.

Il faut se laisser le temps et l’espace pour calculer.

2. Machines finies et circuits booléens 15/28

q0 q1 qF

b|a ◮

a|a ◭

b|b ◭

B|b ◭

a|b ◭ B|B ◮

3. Machines à mémoire non bornée

Machines de Turing

La machine de Turing classique : un contrôle fini couplé à un
ruban biinfini muni d’une tête d’E/S mobile pointant sur une cellule.

3. Machines à mémoire non bornée 16/28

Formellement

Définition Une MT est un tuple (Q, Γ ,Σ, δ, q0, B, qF) où

• Q est l’ensemble fini des états ;

• Γ est l’alphabet fini de travail ;

• Σ ⊆ Γ est l’alphabet fini d’entrée ;

• δ : Q× Γ ⇀ Q× Γ × {◀, � , ▶} est la fonction de transition,
partielle ;

• q0 ∈ Q est l’état initial ;

• B ∈ Γ \ Σ est le symbole blanc ;

• qF ∈ Q est l’état d’acceptation de la machine.

Une transition δ(q,a) = (q′, b,∆) signifie :
« Dans l’état q, lorsque je lis le symbole a,
le remplacer par b, entrer dans l’état q′ et se déplacer de ∆ »

3. Machines à mémoire non bornée 17/28

Configurations et étapes de calcul

0 0 1 × 1 1

q0

u

Partant d’une configuration initiale où la tête est placée dans l’état
q0 au début du mot d’entrée u, la MT calcule en enchaînant les
transitions.

0 0 1 × 1 1

q0

⊢ 0 1 × 1 1

σ1

⊢ 0 1 × 1 1

σ1

⊢

· · · ⊢ 0 1 × 1 1

σ1

⊢ 0 1 × 1 1

σ1

⊢
0 1 × 1 1

σ2

⊢ 0 1 × 1 1 0

σ3

⊢ 0 1 × 1 1 0

σ4

⊢

· · · ⊢ 0 1 × 1 1 0

σ4

⊢ 0 1 × 1 1 0

q0

⊢

· · · ⊢ 0 0 1 1

qF
.

3. Machines à mémoire non bornée 18/28

Configuration initiale

Remarque Même si formellement une configuration est un élément de
Q× ΓZ × Z, on préfère manipuler des descriptions instantannées.

Définition Une configuration est un triple uqv ∈ Γ∗ ×Q× Γ∗.
L’espace des configurations est quotienté par l’ajout de symboles B
à gauche de u ou à droite de v.

0 0 1 × 1 1

q0

u

Définition La configuration initiale sur l’entrée u ∈ Γ∗ est la
configuration c0(u) = q0u.

3. Machines à mémoire non bornée 19/28

Transitions

Définition Un pas de calcul c ⊢ c′ transforme une configuration c
en une configuration c′ selon les règles suivantes :

ua′qav ⊢ uq′a′bv si δ(q,a) = (q′, b,◀)
uqav ⊢ ubq′v si δ(q,a) = (q′, b,▶)
uqav ⊢ uq′bv si δ(q,a) = (q′, b, �)

pour tous a,a′, b ∈ Γ , u,v ∈ Γ∗, q, q′ ∈ Q.

On note ⊢k l’itération, ⊢+ la clôture transitive et ⊢∗ la clôture
réflexo-transitive de la relation ⊢ sur les configurations.

3. Machines à mémoire non bornée 20/28

Configuration terminale

Définition Une configuration terminale est une configuration pour
laquelle aucun pas de calcul n’est possible.

Sur une entrée u, le calcul de la machine partant de c0(u) peut :

• être fini si c0(u) ⊢+ c′ avec c′ une configuration terminale, on
dira dans ce cas que le calcul s’arrête ;

• être infini sinon, on dira alors que le calcul diverge.

Lorsque le calcul s’arrête, on observe l’état de la machine dans la
configuration terminale :

• la machine accepte l’entrée u si elle s’arrête dans l’état qF ;

• la machine rejette l’entrée u si elle s’arrête dans un autre état.

3. Machines à mémoire non bornée 21/28

Fonctions Turing-calculables

Lorsque la machine accepte une entrée, en s’arrêtant dans l’état
acceptant qF , la sortie est lue à droite de la tête, jusqu’au premier
symbole blanc exclus.

Définition La fonction partielle fM : Σ∗ ⇀ Γ∗ calculée par une MT
M est la fonction qui à une entrée associe sa sortie pour M,
lorsqu’elle est définie.

Définition Une fonction partielle f : Σ∗ ⇀ Γ∗ est
Turing-calculable si elle est calculée par une machine de Turing.

3. Machines à mémoire non bornée 22/28

i2 a1 i1 a0 a q0 e1 e2

e3Fc1 c2 c3 c4 c5

r′
1

r1b2 b1
r0

r′
0

b0

i0 σ1

σ2σ3

σ4

1|B ◮

0|B ◮

×|B ◮

∗|∗ ◮

×|× ◮

B|B ◮

∗|∗ ◮

B|B ◭

0|0 ◭

1|1 ◭

∗|∗ ◭

0|0 ◮

1|1 ◮

B|B ◮

0|0 ◭

1|1 ◭

B|0 ◭

∗|∗ ◭

B|B ◭

0|0 ◭

1|1 ◭

∗|∗ ◭

0|0 ◮

1|1 ◮

B|B ◮

0|B ◮

1|B ◮

B|B ◮

∗|∗ ◮

B|B ◭

0|0 ◭

1|1 ◭

∗|∗ ◭

B|B ◮

∗|∗ ◮

B|B ◮

∗|∗ ◮

0|0 ◭

1|1 ◭

B|0 ◭

∗|∗ ◭

B|B ◭

∗|∗ ◭

B|B ◮

0|0 ◮

∗|∗ ◮

B|B ◮

∗|∗ ◮

0|0 ◭

1|1 ◭

B|0 H

∗|∗ ◭

B|B ◭

∗|∗ ◭

0|0 ◮

1|1 ◮

1|1 ◮

∗|∗ ◮

B|B ◮

∗|∗ ◮

0|1 ◭

B|1 H1|0 ◭

∗|∗ ◭

B|B ◭

∗|∗ ◭

0|0 ◮

1|1 ◮

0|0 ◮

B|0 H

1|1 ◮

∗|∗ ◮

B|B ◮

∗|∗ ◮
0|0 ◭

1|1 ◭

B|0 H

Multiplication de deux nombres binaires de longueur non bornée
codés bit de poids faible en tête

Langages récursifs

Pour raisonner sur le calculable, il est souvent pratique de se
restreindre aux prédicats calculables, c’est-à-dire à une notion de
langage reconnaissable.

Définition Le langage LM associé à une MT M est l’ensemble des
entrées pour lesquelles M termine dans l’état acceptant.

Définition Un langage est

• récursivement énumérable s’il est reconnu par une MT ;

• co-récursivement énumérable si son complémentaire l’est ;

• récursif s’il est reconnu par une MT totale, i.e. qui s’arrête sur
toute entrée.

3. Machines à mémoire non bornée 24/28

q0q1 q2 qF

a|a ◮

#|# ◮

#|# ◭

b|# ◭

a|# ◮

B|B ◭

#|# ◭

B|B H

MT totale reconnaissant les mots bien parenthésés sur {a,b}

Normalisation

Lorsqu’on choisit une MT pour reconnaître un langage récursif ou
récursivement énumérable, il est toujours possible de choisir une
MT normalisée.

Définition Une MT normalisée est une MT munie d’un état de rejet
qR et telle que :

1. tous les calculs finis terminent dans l’état qF ou dans l’état qR ;

2. toutes les transitions de la MT sont définies à l’exception de
celles issues de qF et qR.

Proposition La famille des languages récursifs est close par
passage au complémentaire.

3. Machines à mémoire non bornée 26/28

Programmation concurrente

Étant données deux MT M1 et M2, il est possible d’en construire
une troisième M qui simule les comportements de M1 et M2 en
effectuant alternativement des pas de calcul de chacunes des
machines sur deux pistes séparées codées sur son ruban.

Proposition Un langage est récursif si et seulement s’il est
récursivement énumérable et co-récursivement énumérable.

Proposition La familles des langages récursivement énumérables
est close par union et intersection.

Corollaire La familles des langages récursifs est close par union
et intersection.

3. Machines à mémoire non bornée 27/28

Un modèle robuste

Le modèle des MT présenté semble très ad hoc.

Cependant, la classe des fonctions définies est robuste à tout un
tas de variations :

• ruban mono-infini ;

• plusieurs rubans ;

• mémoire comme une file ;

• mémoire comme deux piles ;

• mémoire 2D ;

• mémoire collection de compteurs unaires ;

• . . .

3. Machines à mémoire non bornée 28/28

	Calculabilité
	Machines finies et circuits booléens
	Machines à mémoire non bornée

