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Organisation

Cours 9 x Th30 + 30min N. Ollinger
TD 5 x 2h M. Delacourt <« calculabilité
TD 5 X 2h M. Liedloff — complexité

Support de cours :
https://celene.univ-orleans.fr/course/view.php?id=2106

Evaluation: Note Finale = %CC + %CT
CT: examen de 2h sur Cours + TD

CC: Controles rapides sur le temps du TD.
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https://celene.univ-orleans.fr/course/view.php?id=2106

Méthode de travail

Le contenu de ce cours est passionnant mais trées formel. Ne restez
pas passifs, prenez des notes, relisez-les, posez des questions!

Lisez aussi avant de venir en cours :
e en calculabilité, le polycopié disponible sur Celene;
e en complexité, les chapitres du livre de S. Périfel.

Résolvez et comprenez les exercices de TD!

Des références bibliographiques supplémentaires sont disponibles
sur Celene, si besoin.
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Objet du cours

Partie I. Calculabilite

« Que peut-on calculer avec un ordinateur ? »

Partie Il. Complexité

« Que peut-on calculer efficacement avec un ordinateur ? »
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THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME ptr), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT tv OF LENGTH n AND
PRODUCES En,... THE RUNNING TIME IS O¢piny
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN. I JUST
WANTED To LEARN
How T0 PROGRAM
VIDEO GAMES,

1. Calculabilite



Calculabilitée

Nous présentons quelques éléments de calculabilité autour de
modeles de calcul classiques.

Un bagage classique de M1 informatique. ..
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Calculabilitée

Nous présentons quelques éléments de calculabilité autour de

modeles de calcul classiques.

Un bagage classique de M1 informatique. .. bientot en lycée?

1. Calculabilité

Contenus

Capacités attendues

Commentaires

Notion de programme en tant que
donnée.
Calculabilité, décidabilité.

Comprendre que tout programme
est aussi une donnée.
Comprendre que la calculabilité ne
dépend pas du langage de
programmation utilisé.

Montrer, sans formalisme
théorique, que le probléme de
I'arrét est indécidable.

L'utilisation d’un interpréteur
ou d’un compilateur, le
téléchargement de logiciel, le
fonctionnement des systemes
d’exploitation permettent de
comprendre un programme
comme donnée d’un autre
programme.

extrait du programme de NSI
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extrait du programme de NSI

Ici ce sera avec formalisme théorique!

1. Calculabilité
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Thése de Church, Turing, Kleene, Post et al.

Théoreme (Gandy 1980) Toute fonction discrete calculable par un
dispositif mécanique déterministe, régit par les régles de la

physique classique et qui satisfait les hypothéses suivantes, est
Turing-calculable : (...)
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Thése de Church, Turing, Kleene, Post et al.

Théoreme (Gandy 1980) Toute fonction discrete calculable par un
dispositif mécanique déterministe, régit par les régles de la
physique classique et qui satisfait les hypothéses suivantes, est
Turing-calculable : (...)

Thése de Church-Turing Toute probléme décidable par une
méthode effective est Turing-décidable.

Corollaire Tout probléme Turing-indécidable est indécidable par
toute méthode effective.
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2. Machines finies et circuits booléens




Calcul de fonction

f:A—-B
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Calcul de fonction

£:{0,13™ — {0,1}"

Théoreme Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.
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Calcul de fonction

£:{0,13™ — {0,1}"

Théoreme Toute fonction binaire est calculée par un circuit
combinatoire comportant des portes ET, OU et NON.

Théoréme Toute fonction binaire est calculée par un circuit
combinatoire comportant uniqguement des portes NON-ET.

2. Machines finies et circuits booléens
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Circuits séquentiels

Que se passe-t-il lorsque le graphe du circuit comporte des cycles?

—Q

7
(s

7
I

On obtient des circuits séquentiels dans lesquels les sorties
dépendent des états passés :

y(t+1)=F(x(t),y(t))
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Automates de Mealy

Définition Un automate de Mealy est un tuple (Q, 1,0, qp,d) ou Q
est ’ensemble fini des états, I et O sont les alphabets finis
d’entrée et de sortie, go € Q est I’état initial et 6: Q XI - Q X O
est la fonction de transition de I’automate.

I— —F=0

)
Q

i 3

Théoréme Tout automate de Mealy peut étre mis en ceuvre par un
circuit séquentiel synchrone composé de portes NON-ET et de
registres mémoire.
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Addition de deux nombres binaires de longueur non bornée



Limites du calcul sans mémoire

Proposition |l n’est pas possible de multiplier deux entiers avec
le méme codage.

Il suffit de considérer la famille de produits 2" x 2" = 22" et
d’utiliser un argument de pompage.

Il faut se laisser le temps et I’espace pour calculer.
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Machines de Turing

La machine de Turing classique : un controle fini couplé a un
ruban biinfini muni d’une téte d’E/S mobile pointant sur une cellule.
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Formellement

Définition Une MT est un tuple (Q,T,%, 68,40, B, qr) ou
e Q est|’ensemble fini des états;
e T est I’alphabet fini de travail;

3 cT est 'alphabet fini d’entrée;

0:Q XTI — QXTI Xx{« v, ,p»} estlafonction de transition,
partielle ;

qo € Q est I’état initial ;

B €T\ X est le symbole blanc;

qr € Q est I’etat d’acceptation de la machine.

Une transition 6(q,a) = (q’, b, A) signifie :
« Dans I'état g, lorsque je lis le symbole a,
le remplacer par b, entrer dans I’état g’ et se déplacer de A »
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Configurations et étapes de calcul

u

¢ | %NHXMH |

Partant d’une configuration initiale ou la téte est placée dans I’état
qo au début du mot d’entrée u, la MT calcule en enchainant les

transitions.
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Configuration initiale

Remarque Méme si formellement une configuration est un élément de
Q xTZ x 7, on préfére manipuler des descriptions instantannées.

Définition Une configuration est un triple uqv e I'* x Q xI'*.
L’espace des configurations est quotienté par I’ajout de symboles B
a gauche de u ou a droite de v.

c L [oJoJr]x[1]1] |

Définition La configuration initiale sur I'entrée u € I'* est la
configuration co(u) = qou.

3. Machines a mémoire non bornée 19/28



Transitions

Définition Un pas de calcul ¢ ¢’ transforme une configuration ¢
en une configuration ¢’ selon les regles suivantes :

ua'qav +uq'a’ bv sid(g,a) =(q',b, <)
uqav - ubq'v sid(g,a) = (q',b,»)
uqav - uq'bv sid(g,a) =(q',b, v)

pour tous a,a’,b €T, u,v €T*, q,q" € Q.

On note X I’itération, " la cl6ture transitive et —* la cléture
réflexo-transitive de la relation + sur les configurations.
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Configuration terminale

Définition Une configuration terminale est une configuration pour
laquelle aucun pas de calcul n’est possible.

Sur une entrée u, le calcul de la machine partant de co(u) peut :
[ )

étre fini si co(u) —* ¢’ avec ¢’ une configuration terminale, on
dira dans ce cas que le calcul s’arréte;

étre infini sinon, on dira alors que le calcul diverge.

Lorsque le calcul s’arréte, on observe I’état de la machine dans la
configuration terminale :

e la machine accepte I'entrée u si elle s’arréte dans I'état gr ;

e la machine rejette I’entrée u si elle s’arréte dans un autre état.

3. Machines a mémoire non bornée
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Fonctions Turing-calculables

Lorsque la machine accepte une entrée, en s’arrétant dans I’état
acceptant gr, la sortie est lue a droite de la téte, jusqu’au premier
symbole blanc exclus.

Définition La fonction partielle fa: 3* — I'* calculée par une MT
M est la fonction qui a une entrée associe sa sortie pour M,
lorsqu’elle est définie.

Définition Une fonction partielle f:3* — I'* est
Turing-calculable si elle est calculée par une machine de Turing.
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Langages récursifs

Pour raisonner sur le calculable, il est souvent pratique de se
restreindre aux prédicats calculables, c’est-a-dire a une notion de
langage reconnaissable.

Définition Le langage L, associé a une MT M est I’ensemble des
entrées pour lesquelles M termine dans I’état acceptant.

Définition Un langage est
e recursivement énumérable s’il est reconnu par une MT;
e co-récursivement énumeérable si son complémentaire I’est;

e récursif s’il est reconnu par une MT totale, i.e. qui s’arréte sur
toute entrée.
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MT totale reconnaissant les mots bien parenthésés sur {a, b}



Normalisation

Lorsqu’on choisit une MT pour reconnaitre un langage récursif ou
récursivement énumérable, il est toujours possible de choisir une
MT normalisée.

Définition Une MT normalisée est une MT munie d’un état de rejet
qr et telle que :

1. tous les calculs finis terminent dans I’état gr ou dans I’état g ;

2. toutes les transitions de la MT sont définies a I’exception de
celles issues de gr et gg.

Proposition La famille des languages récursifs est close par
passage au complémentaire.
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Programmation concurrente

Etant données deux MT M; et Mo, il est possible d’en construire
une troisieme M qui simule les comportements de M; et M> en
effectuant alternativement des pas de calcul de chacunes des
machines sur deux pistes séparées codées sur son ruban.

Proposition Un langage est récursif si et seulement s’il est
récursivement énumeérable et co-récursivement énumérable.

Proposition La familles des langages récursivement énumérables
est close par union et intersection.

Corollaire La familles des langages récursifs est close par union
et intersection.
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Un modele robuste

Le modeéle des MT présenté semble trés ad hoc.

Cependant, la classe des fonctions définies est robuste a tout un
tas de variations :

ruban mono-infini;

plusieurs rubans;

mémoire comme une file;

mémoire comme deux piles;

mémoire 2D;

mémoire collection de compteurs unaires;

3. Machines a mémoire non bornée
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