
Calculabilité & Complexité
Calculabilité (2/5) : thèse de Church-Turing

Nicolas Ollinger (LIFO, Université d’Orléans)

M1 info, Université d’Orléans — S2 2025/2026

Un peu de lecture

1/18

q0q1 q2 qF

a|a ◮

#|# ◮

#|# ◭

b|# ◭

a|# ◮

B|B ◭

#|# ◭

B|B H

1. Dans l’épisode précédent. . .

Machines de Turing

La machine de Turing classique : un contrôle fini couplé à un
ruban biinfini muni d’une tête d’E/S mobile pointant sur une cellule.

1. Dans l’épisode précédent. . . 2/18

Formellement

Définition Une MT est un tuple (Q, Γ ,Σ, δ, q0, B, qF) où

• Q est l’ensemble fini des états ;

• Γ est l’alphabet fini de travail ;

• Σ ⊆ Γ est l’alphabet fini d’entrée ;

• δ : Q× Γ ⇀ Q× Γ × {◀, � , ▶} est la fonction de transition,
partielle ;

• q0 ∈ Q est l’état initial ;

• B ∈ Γ \ Σ est le symbole blanc ;

• qF ∈ Q est l’état d’acceptation de la machine.

Une transition δ(q,a) = (q′, b,∆) signifie :
« Dans l’état q, lorsque je lis le symbole a,
le remplacer par b, entrer dans l’état q′ et se déplacer de ∆ »

1. Dans l’épisode précédent. . . 3/18

Échauffement

1. Montrons que la fonction suivante est Turing-calculable :

f : {a,b}∗ → {a,b,#}∗

u, u#u

2. Montrons que le langage suivant est récursif :

L =
{
u ∈ {a,b}∗

∣∣|u|a = |u|b}
3. Le langage suivant est-il récursif ?

Π =
{

bin(n)

∣∣∣∣∣on trouve une suite de n chiffres 6 consécutifs

dans l’écriture décimale de π

}

1. Dans l’épisode précédent. . . 4/18

Normalisation

Lorsqu’on choisit une MT pour reconnaître un langage récursif ou
récursivement énumérable, il est toujours possible de choisir une
MT normalisée.

Définition Une MT normalisée est une MT munie d’un état de rejet
qR et telle que :

1. tous les calculs finis terminent dans l’état qF ou dans l’état qR ;

2. toutes les transitions de la MT sont définies à l’exception de
celles issues de qF et qR.

Proposition La famille des languages récursifs est close par
passage au complémentaire.

1. Dans l’épisode précédent. . . 5/18

Programmation concurrente

Étant données deux MT M1 et M2, il est possible d’en construire
une troisième M qui simule les comportements de M1 et M2 en
effectuant alternativement des pas de calcul de chacunes des
machines sur deux pistes séparées codées sur son ruban.

Proposition Un langage est récursif si et seulement s’il est
récursivement énumérable et co-récursivement énumérable.

Proposition La familles des langages récursivement énumérables
est close par union et intersection.

Corollaire La familles des langages récursifs est close par union
et intersection.

1. Dans l’épisode précédent. . . 6/18

Un modèle robuste

Le modèle des MT présenté semble très ad hoc.

Cependant, la classe des fonctions définies est robuste à tout un
tas de variations :

• ruban mono-infini ;

• plusieurs rubans ;

• mémoire comme une file ;

• mémoire comme deux piles ;

• mémoire 2D ;

• mémoire collection de compteurs unaires ;

• . . .

1. Dans l’épisode précédent. . . 7/18

0

1

2

3

4
...

54
110
42
0
0

Mémoire Pile

17
1492
32

R0

Registres

R1

Rk

...

5

14

0

LOAD R0, [R2]0

1

2

3

m

...

ADD R1, R0

SAVE R0, R1

PUSH R1

CALL 0

Programme

PC

2. Thèse de Church-Turing

Thèse de Church, Turing, Kleene, Post et al.

Thèse de Church-Turing Toute fonction calculable par une
méthode effective est Turing-calculable.

Théorème (Gandy 1980) Toute fonction discrète calculable par un
dispositif mécanique déterministe, régit par les règles de la
physique classique et qui satisfait les hypothèses suivantes, est
Turing-calculable :

• homogénéité de l’espace ;

• homogénéité du temps ;

• densité bornée d’information dans l’espace ;

• vitesse bornée de propagation de l’information à travers l’espace ;

• quiescence initiale de l’espace de calcul sauf dans une zone bornée.

2. Thèse de Church-Turing 8/18

Turing-complétude

Un modèle de calcul décrit une famille dénombrable d’objets et la
manière de les utiliser pour calculer.

Une fonction de codage acceptable décrit une transformation
raisonnable entre modèles pour coder les entrées et les sorties.

Définition Deux modèles de calcul se simulent entre eux s’ils
calculent les même fonctions à un codage acceptable près.

Définition Un modèle de calcul est Turing-complet s’il est
équivalent au modèle des machines de Turing.

2. Thèse de Church-Turing 9/18

Codages raisonnables

Exemples de codages :

1. coder les entiers N,Z : en unaire, en base k (binaire, octal,
hexadécimal)

2. codage de tuples (u1, . . . , uk) : avec un délimiteur, avec un
codage auto-délimité

3. codage de matrices ou de graphes : recoder les éléments, avec
délimiteurs

4. changement d’alphabet : recodage des lettres en mots de taille
fixe, en code préfixe

Un codage raisonnable ne doit pas permettre de calculer des
nouvelles propriétés des objets. . .

2. Thèse de Church-Turing 10/18

Codage acceptable

Définition Un codage est acceptable si :

1. le langage des codages valides est récursif ;

2. on peut calculer (avec un MdC adapté) le codage d’une entrée ;

3. on peut extraire les informations nécessaires du mot codé :
▶ entiers : incrémenter, décrémenter, test à zéro, . . .
▶ graphes : parcours des sommets, test d’adajacence, . . .

Remarque Deux codages acceptables d’un même ensemble
d’objets sont récursivement équivalents.

2. Thèse de Church-Turing 11/18

Quelques exemples de modèles
Turing-complets

• le λ-calcul de Church ;

• le modèle RAM;

• votre langage de programmation favori ;

• les fonctions récursives de Herbrand/Gödel/Kleene ;

• les systèmes canoniques de Post ;

• les automates cellulaires ;

• . . .

2. Thèse de Church-Turing 12/18

IMP : l’archétype du langage impératif

Variables ∋ X,Y
Expressions ∋ E, F : := X

| Constante entière
| E ⊙ F avec ⊙ ∈ {+,−,∗,DIV,MOD}
| E ⊙ F avec ⊙ ∈ {=, <,>,AND,OR}
| ⊙E avec ⊙ ∈ {NOT,−}

Instructions ∋ S, T : := X = E
| S ; T
| IF E THEN S ELSE T
| WHILE E DO S

Programme ∋ P : := READ X; S; WRITE Y

Calcule des fonctions partielles f : N→ N.

2. Thèse de Church-Turing 13/18

I : forme minimale de IMP

Pour simplifier les simulations entre modèles, il est souvent utile
d’avoir une sorte de forme normale minimale du modèle cible.

Théorème Toute fonction calculée par un programme IMP est
calculée par un programme I : un programme IMP utilisant au plus
une boucle et deux variables.

Remarque La version à deux variables est un peu technique mais
on peut se convaincre facilement qu’on sait le faire avec un nombre
constant de variables.

2. Thèse de Church-Turing 14/18

RAM : l’archétype du processeur moderne

0

1

2

3

4
...

54
110
42
0
0

Mémoire Pile

17
1492
32

R0

Registres

R1

Rk

...

5

14

0

LOAD R0, [R2]0

1

2

3

m

...

ADD R1, R0

SAVE R0, R1

PUSH R1

CALL 0

Programme

PC

Les registres stockent des entiers de taille arbitraire, le jeu
d’instructions est choisit suffisament expressif.

Calcule des fonctions partielles f : N→ N.

2. Thèse de Church-Turing 15/18

REG : forme minimale de RAM

Théorème Toute fonction calculée par un programme RAM est
calculée par un programme REG : un programme RAM utilisant
seulement 3 registres et sans pile ni mémoire.

Remarque La mémoire, les registres et la pile stockent à chaque
instant un tuple d’entiers. Avec un codage astucieux, on peut les
coder dans un unique entier. On se garde deux autres registres
pour manipuler ce codage.

2. Thèse de Church-Turing 16/18

Turing-équivalence

Théorème Les modèles de calcul MT, IMP et RAM calculent les
mêmes fonctions (à un codage acceptable près).

Démonstration

1. MT++ simule REG au programme du TD !

2. REG est équivalent à RAM

3. RAM simule I par compilation du langage !

4. I est équivalent à IMP

5. IMP simule MT par simulation des MT !

6. MT est équivalent à MT++

où MT++ désigne les MT enrichies avec rubans mutiples,
multi-têtes, semi-infinis, etc. ■

2. Thèse de Church-Turing 17/18

Dans le prochain épisode

L’automate au cœur de nos ordinateurs est fixé in silico.

Contrairement aux calculatrices de notre enfance à 4, 10, 100
fonctions, on ne change plus de machine pour avoir de nouvelles
possibilités de calcul.

Les programmes sont des données comme les autres, chargés et
exécutés et même compilés sur place.

Cette possibilité existe dans la plupart des modèles de calcul !

2. Thèse de Church-Turing 18/18

	Dans l'épisode précédent…
	Thèse de Church-Turing

