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Rappel de méthode

Polycopié de calculabilité

Nicolas Ollinger

Ce polycopié de calculabilité est issu d’une contribution de l’auteur à

l’édition 2022 de l’École Jeunes Chercheurs en Informatique Mathéma-

tique publiée sous licence Creative Commons cbea. Il est redistribué

ici sous les mêmes termes. Il couvre la plus grande partie du cours de cal-

culabilité, à l’exeception de la partie indécidabilité dans laquelle l’étude de

PCP n’est pas présentée.

Avant-Propos Nous proposons au lecteur quelques éléments d’introduction à la

théorie de la calculabilité autour de modèles de calcul classiques. Il s’agit d’une

invitation à poursuivre par la lecture de références plus complètes comme les

manuels d’O. Carton [3] ou de M. Sipser [34] voire à prolonger par des références

plus exhaustives comme P. Odifreddi [24].

1 Comment bien compter ses moutons

Il était une fois, en des temps lointains, une bergère qui gardait ses

moutons. Afin de s’assurer que tous les animaux qui sortent de la bergerie

le matin réintègrent le bâtiment à la tombée de la nuit, la bergère se munit

d’une jarre et d’une collection de galets. Pour chaque mouton qui quitte la

bergerie, elle ajoute un galet à la jarre. Pour chaque mouton qui rentre à la

bergerie, elle soustrait un galet à la jarre. À la fin de la journée, si la jarre

est vide c’est que tous les moutons ont réintégré leur enclos.

Cette parabole du berger et ses variantes1 sont souvent utilisées pour

illustrer le mot calcul qui vient du latin calculus : petite pierre, caillou. Il

s’agit ici de compter sans nombres en mettant en bijection deux ensembles.

Cette parabole symbolise aussi le début d’une course scientifique et tech-

nologique, l’invention et le perfectionnement d’outils de calcul de plus

• Lire et relire le polycopié disponible sur Celene ;

• S’entraîner avec le simulateur de MT.
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Turing-complétude

Un modèle de calcul décrit une famille dénombrable d’objets et la
manière de les utiliser pour calculer.

Une fonction de codage acceptable décrit une transformation
raisonnable entre modèles pour coder les entrées et les sorties.

Définition Deux modèles de calcul se simulent entre eux s’ils
calculent les même fonctions à un codage acceptable près.

Définition Un modèle de calcul est Turing-complet s’il est
équivalent au modèle des machines de Turing.
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IMP : l’archétype du langage impératif

Variables ∋ X,Y
Expressions ∋ E, F : := X

| Constante entière
| E ⊙ F avec ⊙ ∈ {+,−,∗,DIV,MOD}
| E ⊙ F avec ⊙ ∈ {=, <,>,AND,OR}
| ⊙E avec ⊙ ∈ {NOT,−}

Instructions ∋ S, T : := X = E
| S ; T
| IF E THEN S ELSE T
| WHILE E DO S

Programme ∋ P : := READ X; S; WRITE Y

Calcule des fonctions partielles f : N→ N.

1. Dans l’épisode précédent. . . 3/11



I : forme minimale de IMP

Pour simplifier les simulations entre modèles, il est souvent utile
d’avoir une sorte de forme normale minimale du modèle cible.

Théorème Toute fonction calculée par un programme IMP est
calculée par un programme I : un programme IMP utilisant au plus
une boucle et deux variables.

Remarque La version à deux variables est un peu technique mais
on peut se convaincre facilement qu’on sait le faire avec un nombre
constant de variables.
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RAM : l’archétype du processeur moderne
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Les registres stockent des entiers de taille arbitraire, le jeu
d’instructions est choisit suffisament expressif.

Calcule des fonctions partielles f : N→ N.
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REG : forme minimale de RAM

Théorème Toute fonction calculée par un programme RAM est
calculée par un programme REG : un programme RAM utilisant
seulement 3 registres et sans pile ni mémoire.

Remarque La mémoire, les registres et la pile stockent à chaque
instant un tuple d’entiers. Avec un codage astucieux, on peut les
coder dans un unique entier. On se garde deux autres registres
pour manipuler ce codage.
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Turing-équivalence

Théorème Les modèles de calcul MT, IMP et RAM calculent les
mêmes fonctions (à un codage acceptable près).

Démonstration

1. MT++ simule REG au programme du TD !

2. REG est équivalent à RAM

3. RAM simule I par compilation du langage !

4. I est équivalent à IMP

5. IMP simule MT par simulation des MT !

6. MT est équivalent à MT++

où MT++ désigne les MT enrichies avec rubans mutiples,
multi-têtes, semi-infinis, etc. ■
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2. Machines programmables



Changer de machine

L’automate au cœur de nos ordinateurs est fixé in silico.

Contrairement aux calculatrices de notre enfance à 4, 10, 100
fonctions, on ne change plus de machine pour avoir de nouvelles
possibilités de calcul.

Les programmes sont des données comme les autres, chargés et
exécutés et même compilés sur place.

Cette possibilité existe dans la plupart des modèles de calcul !
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Machine de Turing universelle

Théorème Il existe une machine de Turing universelle U qui
simule toutes les machines de Turing.

Pour toute machine de Turing M sur l’alphabet Σ et toute entrée
u ∈ Σ∗, la machine U s’arrête sur l’entrée ⟨M, u⟩ si et seulement si
M s’arrête sur l’entrée u. Elle accepte si et seulement si M accepte
et dans ce cas

fU (⟨M, u⟩) =
〈
fM(u)

〉
.

Remarque Nécessite de préciser un codage acceptable des MT.

Notation ⟨x⟩ désigne le codage de x.
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Principes de construction

#
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0 ◀ 0 0 , 0 1 : 0 1 , 1 0 ◀ 0 1 , 0 1 :

δ(q0, a) = (q1, b,◀)

q0 a q1 b

0 0 : 1 0 , 1 0 , 0 1 , 1 0

q0bbab

q0 b b a b
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Dans le prochain épisode

Proposition Il existe des (multitudes de) langages non récursifs.

Il suffit de compter :

• les MT sont dénombrables ;

• les langages sur {a,b} ne le sont pas.

Idée utiliser l’argument diagonal de Cantor
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