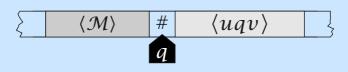
Calculabilité & Complexité

Calculabilité (4/5) : problèmes indécidables

Nicolas Ollinger (LIFO, Université d'Orléans)

M1 info, Université d'Orléans — S2 2024/2025



1. Dans l'épisode précédent...

Limites du calcul

Proposition Il existe des (multitudes de) langages non récursifs.

Il suffit de compter :

- les MT sont dénombrables (on peut les coder);
- les langages sur $\{a,b\}$ ne le sont pas.

Définition Un ensemble X est **dénombrable** s'il existe une application injective de X dans \mathbb{N} .

Idée utiliser l'argument diagonal de Cantor

Diagonalisation

Supposons que (L_i) énumère les langages sur $\{a,b\}$.

L_0			I		ab	ba	UU	aaa	шир	
9	0	0	0	0	0	0	0	0	0	
L_1	0	1	0	1	1	0	0	1	1	
L_2	1	1	1	1	1	1	1	1	1	

$$L'(k) = 1 - L_i(k)$$

Construisons $L' = \{\langle k \rangle | \langle k \rangle \notin L_k \}$ qui est distinct de chaque (L_i) . Contradiction!

Problème de l'arrêt

entrée : une machine de Turing $\mathcal M$ et un mot u question : est-ce que $\mathcal M$ s'arrête sur l'entrée u?

2. Indécidabilité et limites du calcul

Problème de décision

Définition Un **problème de décision** \mathcal{P} est un prédicat sur un ensemble récursif d'entrées E, les instances du problème.

Le **langage associé** au problème est le langage des codages des **instances positives**, *i.e.* $L_{\mathcal{P}} = \{\langle x \rangle | x \in E \land \mathcal{P}(x) \}.$

Problème de l'arrêt

entrée : une machine de Turing \mathcal{M} et un mot u **question** : est-ce que \mathcal{M} s'arrête sur l'entrée u?

Définition Un problème de décision est **décidable** si le langage associé est récursif, **indécidable** sinon.

Le problème de l'arrêt

Problème de l'arrêt

entrée : une machine de Turing \mathcal{M} et un mot u **question** : est-ce que \mathcal{M} s'arrête sur l'entrée u?

Le langage associé est $K = \{\langle \mathcal{M}, u \rangle | \mathcal{M} \text{ s'arrête sur } u\}$.

Proposition *K* est récursivement énumérable.

Idée Il suffit de modifier légèrement la machine de Turing **universelle** pour qu'elle détecte l'arrêt.

Un problème indécidable

Théorème Le problème de l'arrêt est indécidable.

Par l'absurbe, en supposant K reconnu par une MT totale \mathcal{H} , on construit une MT Δ qui sur l'entrée $\langle \mathcal{M} \rangle$:

- 1. exécute \mathcal{H} sur l'entrée $\langle \mathcal{M}, \mathcal{M} \rangle$
- 2. si \mathcal{H} accepte alors Δ diverge;
- 3. si \mathcal{H} rejette alors Δ s'arrête.

Par construction, la MT Δ possède un **codage** $\langle \Delta \rangle$. Étudions $\Delta(\langle \Delta \rangle)$!

Corollaire le langage *K* n'est pas co-récursivement énumérable.

Des problèmes indécidables

Une technique pour dériver de nombreux problèmes indécidables à partir d'un premier consiste à utiliser des **réductions** : des pré-ordres sur les langages qui **préservent la récursivité**.

Définition Soient $A \subseteq \Sigma^*$ et $B \subseteq \Gamma^*$ deux langages. Une **réduction** (many-one) de A à B est une fonction totale calculable $f: \Sigma^* \to \Gamma^*$ telle que

$$u \in A \Leftrightarrow f(u) \in B \quad \forall u \in \Sigma^*$$
.

Le langage A se réduit au langage B, noté $A \leq_m B$ s'il existe une réduction de A à B.

Proposition La relation \leq_m est une relation de **pré-ordre**.

Réductions many-one

Proposition Si $A \leq_m B$ alors $\overline{A} \leq_m \overline{B}$.

Idée L'équivalence passe au complémentaire.

Proposition Si $A \leq_m B$ avec B récursivement énumérable alors A est récursivement énumérable.

Idée Construire un reconnaisseur pour A à partir d'un reconnaisseur pour B.

Corollaire Si \mathcal{P} est **indécidable** et si $L_{\mathcal{P}} \leq_m L_{\mathcal{P}'}$ alors \mathcal{P}' est **indécidable**.

Exemple de réduction

Problème de l'arrêt sur l'entrée vide

entrée : une machine de Turing ${\mathcal M}$

question : est-ce que $\mathcal M$ s'arrête sur l'entrée vide ε ?

Le langage associé est $K_0 = \{\langle \mathcal{M} \rangle | \mathcal{M} \text{ s'arrête sur } \epsilon\}.$

Montrons que $K_0 \leq_m K$ et $K \leq_m K_0$!

Exemple de réduction (bis)

Égalité de fonctions

entrée : $\textit{deux machines de Turing } \mathcal{M} \textit{ et } \mathcal{N}$

question : est-ce que $\mathcal M$ et $\mathcal N$ calculent la même fonction?

Le langage associé est $E = \{ \langle \mathcal{M}, \mathcal{N} \rangle | f_{\mathcal{M}} = f_{\mathcal{N}} \}.$

Montrons que $K_0 \leq_m E$ et $K_0 \leq_m \overline{E}$!

Théorème de Rice

Une MT est un objet syntaxique qui décrit la manière d'organiser un calcul.

Le **langage reconnu** par la machine est de nature **sémantique**, c'est le résultat du calcul.

Le **théorème de Rice** montre que tout problème qui voudrait caractériser une propriété purement sémantique des machines est **indécidable** ou **trivial**.

Remarque La démonstration se fait par réduction.

Formalisation du théorème de Rice

Définition Une propriété \mathfrak{P} des langages est **non triviale** s'il existe deux machines de Turing \mathcal{M} et \mathcal{M}' telles que $L(\mathcal{M})$ vérifie \mathfrak{P} et $L(\mathcal{M}')$ ne vérifie pas \mathfrak{P} .

Théorème Soit $\mathfrak P$ une propriété des langages non triviale. Le problème d'appartenance à $\mathfrak P$ est indécidable.

Problème d'appartenance à 🎗

entrée : une machine de Turing ${\mathcal M}$

question: est-ce que $L(\mathcal{M})$ vérifie \mathfrak{P} ?