Calculabilité & Complexité

Complexité (1/4) : reboot

Nicolas Ollinger (LIFO, Université d'Orléans)

M1 info, Université d'Orléans — S2 2024/2025

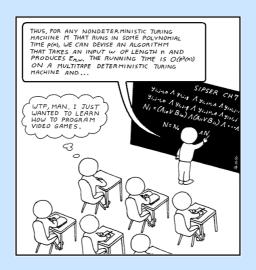
Objet du cours

Partie I. Calculabilité

« Que peut-on calculer avec un ordinateur? »

Partie II. Complexité

« Que peut-on calculer efficacement avec un ordinateur? »



2. Complexité

Théorie de la complexité

Le but de la **théorie de la complexité** est de prendre en compte les limitations qui rendent certaines solutions inaccessibles en pratique, bien que **calculables**.

Dans un premier temps, on s'intéressera aux ressources en **temps** et **espace** de calcul.

Algorithmique Étant donné un problème, on cherche un algorithme le plus efficace possible pour le résoudre.

Complexité Étant donné un problème, on cherche une borne sur la complexité d'un meilleur algorithme pour le résoudre.

2. Complexité 2/12

Thèse de Church-Turing

Thèse de Church-Turing Toute fonction calculable par une méthode effective est Turing-calculable.

2. Complexité 3/12

Thèse de Church-Turing étendue

Thèse de Church-Turing Toute fonction calculable par une méthode effective est Turing-calculable.

Thèse de Church-Turing étendue Tous les modèles de calcul classiques raisonnables ont une même complexité à un facteur polynomial près.

2. Complexité 3/12

Thèse de Church-Turing étendue

Thèse de Church-Turing Toute fonction calculable par une méthode effective est Turing-calculable.

Thèse de Church-Turing étendue Tous les modèles de calcul classiques raisonnables ont une même complexité à un facteur polynomial près.

Attention, on ne mesure pas toujours la taille de l'entrée de la même manière en **algorithmique** et en **complexité**!

2. Complexité 3/12

Modèle de complexité : MT à k rubans

La machine de Turing classique est enrichie : un contrôle fini couplé à $k \ge 2$ rubans biinfinis munis chacun d'une tête d'E/S mobile pointant sur une cellule. Parmi ces rubans, un ruban d'entrée en lecture seule et un ruban de sortie en écriture seule.

$$\delta(q, \underbrace{a_0, a_1, \ldots, a_{k-2}}) = (q', \underbrace{b_1, b_2, \ldots, b_{k-1}},$$
 lecture sur $k-1$ rubans écriture sur $k-1$ rubans

$$\underbrace{\Delta_0,\ldots,\Delta_{k-1}}_{k \text{ déplacements}}$$

2. Complexité 4/12

Formellement

Définition Une MT à k-rubans est un tuple $(Q, \Gamma, \Sigma, \delta, q_0, B, q_a, q_r)$ où

- Q est l'ensemble fini des états;
- Γ est l'alphabet fini de travail;
- $\Sigma \subseteq \Gamma$ est l'alphabet fini d'entrée;
- $\delta: (Q \setminus \{q_a, q_r\}) \times \Gamma^{k-1} \to Q \times \Gamma^{k-1} \times \{\blacktriangleleft, \blacktriangledown, \blacktriangleright\}^k$

est la fonction de transition;

- $q_0 \in Q$ est l'état initial;
- $B \in \Gamma \setminus \Sigma$ est le symbole blanc;
- $q_a \in Q$ est l'état d'acceptation de la machine;
- $q_r \in Q$ est l'état de rejet de la machine.

2. Complexité 5/12

Exercice

Construire une MT à 2 rubans qui teste **efficacement** (en O(3n) étapes de calcul) si un mot $u \in \{a,b\}^*$ (de longueur n) est un **palindrome**.

Remarque Avec un unique ruban, il n'est pas possible d'être aussi efficace. Sauriez-vous le démontrer?

2. Complexité 6/12

Mesurer le temps et l'espace

Temps de calcul

 $t_{\mathcal{M}}(u)$ = nombre de pas de calcul avant arrêt pour \mathcal{M} sur l'entrée u

$$t_{\mathcal{M}}(n) = \max_{u \in \Sigma^n} t_{\mathcal{M}}(u) \qquad \forall n \in \mathbb{N}$$

Espace de calcul

 $s_{\mathcal{M}}(u)$ = nombre total de cases des rubans de travail visitées

$$s_{\mathcal{M}}(n) = \max_{u \in \Sigma^n} s_{\mathcal{M}}(u) \quad \forall n \in \mathbb{N}$$

Proposition Pour toute k-MT \mathcal{M} il existe un α tel que

$$\begin{cases} s_{\mathcal{M}}(u) \leqslant & (k-1)t_{\mathcal{M}}(u) \\ t_{\mathcal{M}}(u) \leqslant & 2^{\alpha(s_{\mathcal{M}}(u)+|u|)} \end{cases} \quad \forall u \in \Sigma^*$$

2. Complexité 7/12

Des tas de rubans

Proposition Toute MT \mathcal{M} à $k \ge 2$ rubans est équivalente à une MT \mathcal{M}' à 2 rubans telle que

$$t_{\mathcal{M}'}(n) \leq t_{\mathcal{M}}(n) \log t_{\mathcal{M}}(n) \quad \forall n \in \mathbb{N}$$

Remarque La borne proposée demande des constructions subtiles. On pourra commencer par une version naïve avec

$$t_{\mathcal{M}'}(n) \leq t_{\mathcal{M}}(n)^2 \quad \forall n \in \mathbb{N}$$

2. Complexité 8/12

Classes de complexité en temps déterministe

Hartmanis et Stearns 1965

Définition Pour toute fonction $f: \mathbb{N} \to \mathbb{N}$, la classe $\mathrm{DTIME}(f(n))$ est l'ensemble des langages reconnus par une MT \mathcal{M} en temps borné par $\alpha f(n)$ pour un certain α .

$$\forall u \in \Sigma^* \qquad t_{\mathcal{M}}(u) \leq \alpha f(|u|)$$

Définition Si \mathcal{F} est un ensemble de fonctions on note

$$DTIME(\mathcal{F}) = \bigcup_{f \in \mathcal{F}} DTIME(f(n))$$

$$\mathbf{P} = \mathbf{DTIME}\left(\left\{n^k \,\middle|\, k \in \mathbb{N}\right\}\right)$$

2. Complexité 9/12

Premières propriétés

Proposition Si $f(n) \ge n$ pour tout $n \in \mathbb{N}$ alors $\mathrm{DTIME}(f(n))$ est clos par union finie, intersection finie et complémentaire.

Théorème[accélération] Pour toute fonction $f: \mathbb{N} \to \mathbb{N}$ et tout $\varepsilon > 0$, si L est reconnu en temps f(n) alors il existe une MT \mathcal{M}' qui reconnaît L en temps $(1 + \varepsilon)n + \varepsilon f(n)$.

2. Complexité 10/12

Théorème de hiérarchie

Définition Une fonction $f: \mathbb{N} \to \mathbb{N}$ est **constructible en temps** s'il existe une constante α et une MT qui sur l'entrée 1^n (l'entier n en unaire) renvoie $1^{f(n)}$ (l'entier f(n) en unaire) en temps $\leq \alpha f(n)$.

Théorème[H&S 65] Pour toute fonction f constructible en temps

$$\mathsf{DTIME}(f(n)) \subseteq \mathsf{DTIME}(nf(n)^2)$$

2. Complexité 11/12

Première séparation

$$P = \bigcup_{k \in \mathbb{N}} DTIME(n^k)$$

$$EXP = \bigcup_{k \in \mathbb{N}} DTIME(2^{n^k})$$

Corollaire $P \subseteq EXP$

Idée $P \subseteq DTIME(n^{\log n}) \subsetneq DTIME(n^{1+\log^2 n}) \subseteq DTIME(2^n) \subseteq EXP$

2. Complexité 12/12