
Compilation
Analyse lexicale et (surtout) syntaxique

Jules Chouquet

SOM2IF15 – 2026

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 1 / 17

Où on en est :

On sait d’où l’on part : un programme P écrit dans un langage de haut
niveau.
On sait où l’on va : traduction vers du code MIPS à terme. Dans un
premier temps, vers des arbres syntaxiques.

Objet de ce cours
Un programme qui doit analyser P reçoit dans un premier temps une suite
de caractères, et non des données structurées.
L’analyse lexicale va transformer la suite de caractères en une suite de
“mots”, ou lexèmes (ou tokens).
L’analyse syntaxique va structurer les lexèmes en une arborescence
représentant la structure du programme lu.

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 2 / 17

Exemple

Donnée en entrée de l’analyse lexicale :
v o i d f P l u s () { \n p r i n t (x + 1) ; \n }

En sortie :
void fPlus () { print (x + 1) ; }

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 3 / 17

Analyse lexicale

On considère que tous les mots du langage sont définissables par des
expressions régulières.
Les expressions régulières sont reconnaissables par des automates
déterministes.

Pour les détails
Cours sur les langages et les automates. (ou me contacter pour des
références de livres)

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 4 / 17

Analyse syntaxique : Parlons grammaires

Nous décrivons tous les programmes possibles d’un langage à travers une
grammaire hors contexte et des règles de génération.

Définition : Grammaire hors contexte
C’est un quadruplet (NT ,T ,R, S) :

NT est un ensemble fini de symboles non terminaux
T est un ensemble fini a de symboles terminaux
R est un ensemble de règles de la forme V → w où

▶ V est un symbole non terminal
▶ w ∈ {T ,NT}∗

S est le symbole initial.

a. L’ensemble des entiers N n’est pas correct par exemple.

Les terminaux correspondront aux lexèmes identifiés par l’analyse
lexicale.

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 5 / 17

Un exemple

G = ({X ,B,C ,N,A,E , I ,P} , {a, . . ., z , 0, . . ., 9,+,−,=, ; } ,R,P)
Où R est l’ensemble de règles suivant :

1 C → 0
...

9 C → 9

10 N → C

11 N → NC

12 X → a
...

38 X → z

39 B → true
40 B → false

41 A → X

42 A → N

43 A → B

44 E → A

45 E → E + E

46 E → E − E

47 E → E == E

48 I → X = E

49 I → if E then I

50 P → ϵ

51 P → I ;P

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 6 / 17

Dérivation et génération de langage

Définition : Dérivation
Soient G = (NT ,T ,R, S) une grammaire et u, u′ deux chaînes de
caractères sur T ∪ NT .

u′ est immédiatement dérivé de u si u′ est obtenu en remplaçant
dans u un symbole non terminal V par une chaîne w avec une règle
V → W de R . On écrit u ⇒ u′.
u′ est dérivé de u s’il existe une suite finie de dérivations immédiates
de u vers u′. On écrit u ⇒∗ u′.

Définition : langage généré
Le langage généré par la grammaire G = (NT ,T ,R, S) est l’ensemble

L(G) = {w ∈ T ∗ | S ⇒∗ w}

il contient tous les mots qui peuvent être dérivés depuis le symbole initial.

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 7 / 17

Exemple de dérivation et exercice

[au tableau]

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 8 / 17

Structuration arborescente du langage

Définition : Arbre syntaxique
Soit G = (NT ,T ,R, S) une grammaire.
Un arbre syntaxique (parse tree) est un arbre (ordonné) dans lequel :

Les nœuds sont indexés par des symboles de NT ∪ T ∪ {ϵ}
▶ Chaque nœud interne (̸= feuille) est un non terminal.
▶ Chaque feuille est un terminal ou ϵ

La racine est indexée par S
Si un nœud est indexé par A ∈ NT , et ses enfants sont indexés par
X1, . . .,Xk , alors A → X1. . .Xk est une règle de R .

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 9 / 17

[exemples d’arbres au tableau]

On dira qu’une chaîne s est reconnue par un arbre syntaxique A si elle est
le résultat de la lecture de gauche à droite des feuilles de A.

Une grammaire sera dite ambiguë s’il existe une chaîne dans L(G) qui
admet plus d’un arbre syntaxique.

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 10 / 17

Arbre de syntaxe abstrait

C’est une simplification de l’arbre de syntaxe qui enlève des informations
superflues (parenthèses, lexèmes sans contenu) et remplace les non
terminaux par le nom de la règle appliquée.

[figures]

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 11 / 17

Une autre syntaxe pour les grammaires

Forme de Backus-Naur (BNF)
→ devient ::=
Les non terminaux sont écrits entre chevrons
V → w1, . . .,V → wn sont rassemblées et notées V ::= w1 | . . . | wn

Il existe des variantes ou des extensions, notamment avec des expressions
régulières. Par exemple ⟨P⟩ ::= {⟨I ⟩; }∗ (un programme est une suite —
éventuellement vide) — d’instructions).

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 12 / 17

Si l’on reprend la grammaire G donnée plus haut, on obtient la
présentation suivante :
<digit> → 0|1|2|3|4|5|6|7|8|9
<char> → a|...|z
<nat> → <digit> | <digit><nat>
<bool> → true | false
<const> → <nat> | <bool>
<exp> → <const> | <exp> + <exp> | <exp> - <exp>
<inst> → <char> = <exp> | if <exp> then <inst>
<prog> → ϵ | <inst> ; <prog>

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 13 / 17

Description et analyse des langages de programmation

Les expressions régulières ne permettent pas en général de décrire les
langages. Les grammaires hors contextes, plus expressives, seront utilisées
(avec notation BNF le plus souvent).
Pour produire l’analyse syntaxique des langages décrits de cette façon, il
existe plusieurs algorithmes que nous n’étudierons pas ce semestre 1.

Nous allons tricher, et utiliser un programme permettant de générer des
analyseurs (lexicaux et syntaxiques), pour les grammaires que nous lui
spécifierons en entrée.

1. Les plus connus : LL(k), LR(k), LALR(1). Écrivez-moi si vous souhaitez des
références.

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 14 / 17

ANTLR : analyse lexicale

Example

lexer grammar Example;

ID : [a-zA-Z]+; //identifiants
INT : [0-9]+; //entiers

NEWLINE : ’\r’?’\n’; //retour ligne

WS : [\t] -> skip; //oubli des espaces

La priorité suit l’ordre des règles : si je veux ajouter un mot réservé avec
LET : ’let’, par exemple, il doit être placé avant la règle pour ID (sinon
’let’ sera reconnu comme un identifiant).

J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 15 / 17

ANTLR : Analyse syntaxique

Pour la description d’une grammaire :
On utilise une notation proche de la BNF.
Les non terminaux sont en minuscule, et les règles suivent la syntaxe
suivante : nt: V1 |...| Vk ; où les Vi sont des expressions
comportant des terminaux, des non terminaux, et des caractères
propres (comme ’)’).

[demo sur une grammaire pour des arbres binaires d’entiers] 2

2. Indications pour les tests disponibles sur Celene
J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 16 / 17

Examen d’un analyseur généré par ANTLR

Le code généré 3 permet de représenter les arbres de dérivation.
Les nœuds seront des objets de la classe Context.

[demo pour la grammaire des exemples précédents]

3. En java, pour ce qui nous concerne ce semestre
J. Chouquet Compilation – Jules Chouquet SOM2IF15 – 2026 17 / 17

