Compilation

Vérification des types

Jules Chouquet

SOM2IF15 - 2026

Compilation — Jules Chouquet SOM2IF15 — 2026 1/21

Ou on en est :

D'ol I'on part : Un arbre de syntaxe abstrait généré a travers une hiérarchie
de classes que I'on a élaborée a |'aide de visiteurs.

Ou I'on va : toujours vers de |'assembleur, a terme. Mais il faut vérifier que
le code a du sens avant d'essayer de le traduire en exécutable.

Objet de ce cours

Visiter I'AST pour vérifier que les déclarations et utilisations de variables
sont cohérentes dans le code, et que toutes les expressions sont bien typées.

Les vérifications correspondent aux dérivations de typage vues au cours
précédent, mais avec une gestion des déclarations locales (dans des blocs).

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 2/21

Dans les cours précédents :

La gestion des environnements de typage se faisait a travers une unique
liste, ou map.
mais : par exemple, le code suivant :

if (b){int x;...}else{boolean x;...}

est valide dans la plupart des langages.

Mais on a dit au cours précédent qu'un élément de programme ne pouvait
&tre associé qu'a un seul type.

Par ailleurs, dans I'exemple ci-dessus, une utilisation de x a la sortie de la
conditionnelle n'est pas possible sans erreur.

La variable n'existe que dans le bloc ou elle est définie!. Elle n'est plus
visible apres.

1. Donc dans I'exemple ci-dessus, le compilateur se comportera de la méme facon que
si un nom de variable différent était utilisé.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 3/21

Mais dis-moi, Jamy, c'est quoi un bloc?

Compilation — Jules Chouquet SOM2IF15 — 2026 4/21

Mais dis-moi, Jamy, c'est quoi un bloc?

Une suite d'instructions que |'on souhaite délimiter

Compilation — Jules Chouquet SOM2IF15 — 2026 4/21

Portée des variables

Une déclaration de variable n'est valable que dans le bloc ou elle se trouve.
Mais, bien entendu, aussi dans les sous-blocs !

{...int x;... if(O){x=1;...Yelse{x=2;...}...print(x);...}

Pour définir la portée d'une variable, il faut représenter |'entrelacement des

blocs. Si le programme est syntaxiquement correct (bien parenthésé), les
blocs forment une arborescence. ?

2. On peut avoir un nombre arbitraire de blocs dans le méme bloc, et un nombre
arbitraire d'imbrication de blocs.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 5/21

Ou sont les blocs?

Au niveau syntaxique : généralement entre les accolades. (mais pas
systématiquement). Le corps d'une définition de fonction, d'une boucle
while, ou les branches d'une conditionnelle sont toujours des blocs.

La classe Block de I'AST

Dans la grammaire, il n'y a pas forcément de régle pour les blocs. ? On doit
rajouter cette catégorie dans I'AST, et transformer toutes les suites
d'instructions nécessaires en blocs .

a. Pourquoi?
b. Pour cela, deux possibilités : transformer I'AST, ou modifier la premiére création de
I'’AST depuis le parseur (AstBuild)

Attention, il faut aussi transformer les instructions simples en blocs :

if(b) print(b); else print(not(b));

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 6/21

Rappel

L'information dont on a besoin : le type des variables apparaissant dans le
bloc (comme sous-instructions et sous-expressions).

o Cette information est renseignée au moment de la déclaration de la
variable.

o Cette information est utilisée au moment de la visite du bloc qui
vérifie que le programme est bien typé.

Cette information, en java, sera représentée par une Map<String, Type>.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 7/21

Ou sont les types?
Table des symboles

Si, dans un bloc, on trouve la suite d'instructions int x;...;y=(x+1),
alors c'est facile : au moment de vérifier le type de x+1, on utilise le
get (“x’’) de notre table, qui aura été enrichie par un put (‘x’’,Int).
Mais si la déclaration de x n'est pas dans le méme bloc (que son
utilisation), alors on a deux possibilités :

@ x a été déclarée dans un bloc parent, et il faut donc considérer cette
déclaration pour la vérification de types.

@ x n'a pas été déclarée du tout, et il faut indiquer une erreur .

On va commenter la facon de gérer ces deux cas dans la suite du cours.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 8/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM | TYPE |

Compilation — Jules Chouquet SOM2IF15 — 2026 9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

@ NOM | TYPE \

Compilation — Jules Chouquet SOM2IF15 — 2026 9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM | TYPE |

Compilation — Jules Chouquet SOM2IF15 — 2026 9/21

Dans un seul bloc :

Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

11 erreur si déja présent !!!

NOM

TYPE

Compilation — Jules Chouquet

Int

SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :

Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

9/21

Dans un seul bloc :

Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

'q!ﬁiw

Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :

Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

return Int, mon brave

Int

Compilation — Jules Chouquet SOM2IF15 — 2026

9/21

Dans un seul bloc :
Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

NOM

TYPE

return Int, mon brave

Int

J. Chouquet Compilation — Jules Chouquet

SOM2IF15 — 2026

9/21

Dans un seul bloc :

Deux visiteurs vont passer

@ Pour remplir la table :

®
o Pour vérifier le type et consulter la table : E

return Int, mon brave

J. Chouquet Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

9/21

Dans plusieurs blocs?

Compilation — Jules Chouquet SOM2IF15 — 2026 10/21

Dans plusieurs blocs?

Compilation — Jules Chouquet SOM2IF15 — 2026 10/21

Dans plusieurs blocs?

Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

Compilation — Jules Chouquet

NOM

TYPE

Int

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

Compilation — Jules Chouquet

NOM | TYPE
X Int
NOM

TYPE

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

Compilation — Jules Chouquet

NOM | TYPE
X Int
NOM

TYPE

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

J. Chouquet

Compilation — Jules Chouquet

NOM | TYPE
X Int
NOM

TYPE

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

NOM | TYPE
X Int
NOM

TYPE

Point de x en vue, messire !

J. Chouquet Compilation — Jules Chouquet

SOM2IF15 — 2026

10 /21

Dans plusieurs blocs?

J. Chouquet

Certes, return Int sans plus tarder

Compilation — Jules Chouquet

NOM | TYPE
X Int
NOM

TYPE

SOM2IF15 — 2026

10 /21

Comment on représente |'imbrication des blocs

On commence par représenter tous les blocs a plat : on a une table qui
associe chaque bloc aux déclarations qui lui sont locales :

Map <Block,Map <String,Type> >

méme si les blocs sont imbriqués.

Mais pour savoir si une variable a été déclarée dans un bloc parent, on
conserve l'information de la liste des blocs dans lesquels on est entrés, c'est
ceux que |'on sera autorisés a consulter pour notre recherche de variable.

Quelle est la structure de donnée la plus adaptée pour cette représentation ?

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 1/21

L historique des entrées/sorties de blocs

Une solution : les piles de java, (java.util.Stack), avec les méthodes
push, pop, et peek (retourne le sommet de la pile sans le supprimer).

Ainsi, si I'historique est représenté par une pile p :

visit (Block b){
creerTableLocale(b);//Map<String, Type>
p.push(b);
super .visit(b); //visiteur generique
p.pop(b);

}

A tout moment de la visite, p représente bien, dans I'ordre, |'imbrication
des blocs dans laquelle on se trouve.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 12 /21

Enregistrer les déclarations

visit (Declaration d){
Type t = table.recherche(d.getNom(),p);//a suivre
if (t!=null){

//erreur : wvariable deja declaree
¥
if (p.isEmpty O){

//erreur : on n’est dans aucun bloc
}

else table.get(p.peek()).put(d.getNom(),d.getType ());

Compilation — Jules Chouquet SOM2IF15 — 2026 13/21

Recherche E

Dans la table des symboles, blocks représente I'ensemble des tables locales
évoquée plus tot.

recherche (String nom, Stack<Block> p){
Type t = null;
for(Block b: p){
Map<String ,Type> table = blocks.get(b);
if (table == null){
//erreur
}
t=table.get (nom);
if (t!=null){
return t;//premier resultat dans la pile des blocs

}

return t;

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 14 /21

Un peu de structure

Pour la vérification de type, une articulation naturelle du code consisterait
en I'organisation suivante :

@ Une classe SymbolTable pour la gestion de la table des symboles :
table globale blocks, méthode de recherche.

@ Une classe TableBuilder pour la construction de la table, héritant du
visiteur générique de I'AST. Ce visiteur comportera un champ table
correspondant a la classe précédente. Question : quel est le type du
visiteur, quelles sont les méthodes de visite implémentées 7

@ Une classe TypeChecker pour la vérification de types, qui hérite aussi
du visiteur générique. Question : idem. Le vérificateur se basant sur la
table, il sera instancié avec un champ de la classe SymbolTable.

[Pour illustrer cette articulation, un petit coup d'ceil au Main du compilateur]

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 15/21

Qu'est-ce qui nous manque ?

Compilation — Jules Chouquet SOM2IF15 — 2026 16 /21

Qu'est-ce qui nous manque ?

@ La gestion des erreurs

Compilation — Jules Chouquet SOM2IF15 — 2026 16 /21

Qu'est-ce qui nous manque ?

@ La gestion des erreurs

o Les fonctions

Compilation — Jules Chouquet SOM2IF15 — 2026 16 /21

Gérer les erreurs de typage

Pour plus de souplesse, les erreurs peuvent étre stockées sous formes de
listes de chaines de caractéres : une classe Errors pourra implémenter
cela, avec les méthodes adaptées pour I'ajout, |'affichage.

Un choix possible : la méthode add de Errors attend une chaine, et un
Neeud ; et sa méthode print utilise la position du nceud pour préfixer le
message.

Une instance de Errors sera présente dans tous les visiteurs évoqués plus
haut, de facon a ce qu'a chaque phase de I'analyse sémantique, on puisse
s'assurer que la liste d’erreurs soit vide avant de continuer.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 17 /21

Et les fonctions ?

De quoi a-t-on besoin pour vérifier que tout se passe bien au niveau du
typage, en présence de fonctions?

Pour sa définition :

Compilation — Jules Chouquet SOM2IF15 — 2026 18 /21

Et les fonctions ?

De quoi a-t-on besoin pour vérifier que tout se passe bien au niveau du
typage, en présence de fonctions?
Pour sa définition :

@ La valeur retournée est du bon type

@ Une valeur est forcément retournée

@ Les paramétres sont utilisés avec le bon type

Pour son utilisation (appels) :

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 18/21

Et les fonctions ?

De quoi a-t-on besoin pour vérifier que tout se passe bien au niveau du
typage, en présence de fonctions?
Pour sa définition :

@ La valeur retournée est du bon type

@ Une valeur est forcément retournée

@ Les paramétres sont utilisés avec le bon type

Pour son utilisation (appels) :

@ Le nombre d'arguments correspond a la définition
o lls ont le bon type

@ Le résultat est utilisé avec le type de retour de la fonction (int x =

£(...)5)

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 18/21

Et les fonctions ?
En pratique

Représenter la signature des fonctions par une classe enregistrant les types
et noms des paramétres, le nom de la méthode, et le type de retour.

Dans la tables des symboles : une donnée supplémentaire, (Map) associant
chaque nom de fonction & sa signature. 3

3. Pas de pile, car toutes les fonctions sont définies au méme niveau, celui du
programme.

J. Chouquet Compilation — Jules Chouquet SOM2IF15 — 2026 19/21

[Examen du code d’un vérificateur de type pour langage impératif simple avec fonctions]

Compilation — Jules Chouquet SOM2IF15 — 2026 20/21

Bilan d'étape

On a terminé la partie du cours sur la vérification de types.

Compilation — Jules Chouquet SOM2IF15 — 2026 21/21

Bilan d'étape

On a terminé la partie du cours sur la vérification de types.

Bientot sur vos écrans :
@ Représentation intermédiaire, et traduction.

@ Assembleur et génération de code

Compilation — Jules Chouquet SOM2IF15 — 2026 21/21

