Automates, Langages et Logique

1. Alphabets – Mots – Langages

L2, Université d'Orléans — S1 2025/2026

Nicolas Ollinger

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \clubsuit, \ggg\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, , \clubsuit\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\spadesuit, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ...

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, , \clubsuit\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ... et les **lettres minuscules** de fin d'alphabet pour représenter les **lettres** : x, y, z, ...

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, , \clubsuit\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ... et les **lettres minuscules** de fin d'alphabet pour représenter les **lettres** : x, y, z, ...

Pour fabriquer des mots, on colle les lettres les unes derrière les autres!

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, , \clubsuit\}$$

$$\{1, V, X, D, C, L, M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ... et les **lettres minuscules** de fin d'alphabet pour représenter les **lettres** : x, y, z, ...

Pour fabriquer des mots, on colleconcatène les lettres.

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, \clubsuit\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ... et les **lettres minuscules** de fin d'alphabet pour représenter les **lettres** : x, y, z, ...

Pour fabriquer des mots, on colleconcatène les lettres.

L'ordre d'apparition des lettres dans un mot est important.

Définition Un alphabet est un ensemble fini de lettres, ou symboles.

$$\{0,1\} \qquad \{a,b,c\} \qquad \{\clubsuit, \spadesuit, \clubsuit\}$$

$$\{I,V,X,D,C,L,M\} \qquad \{\bigstar, \bigstar, \bigstar, \bigstar\} \qquad \left\{\frac{\sqrt{5}+1}{2}, \pi\right\}$$

Dans ce cours, on utilise les **lettres capitales** du début de l'alphabet pour représenter pour les **alphabets** : A, B, C, ... et les **lettres minuscules** de fin d'alphabet pour représenter les **lettres** : x, y, z, ...

Pour fabriquer des mots, on colleconcatène les lettres.

L'ordre d'apparition des lettres dans un mot est importantsignificatif.

Définition Un mot u sur l'alphabet A est une suite finie $u_0u_1\cdots u_{n-1}$ de lettres de A. L'entier n est la longueur de u, notée |u|.

Définition Un mot u sur l'alphabet A est une suite finie $u_0u_1\cdots u_{n-1}$ de lettres de A. L'entier n est la longueur de u, notée |u|.

Le **plus petit** mot est le **mot vide**, de longueur 0, noté ε .

Définition Un mot u sur l'alphabet A est une suite finie $u_0u_1\cdots u_{n-1}$ de lettres de A. L'entier n est la longueur de u, notée |u|.

Le **plus petit** mot est le **mot vide**, de longueur 0, noté ε .

Dans ce cours, on **indexe les lettres** des mots en partant de 0. Ainsi u_i , ou encore u[i], désigne la $i+1^{\rm e}$ lettre du mot u.

Définition Un mot u sur l'alphabet A est une suite finie $u_0u_1\cdots u_{n-1}$ de lettres de A. L'entier n est la longueur de u, notée |u|.

Le **plus petit** mot est le **mot vide**, de longueur 0, noté ε .

Dans ce cours, on **indexe les lettres** des mots en partant de 0. Ainsi u_i , ou encore u[i], désigne la $i+1^e$ lettre du mot u.

Remarque Attention, certains indexent parfois à partir de 1.

Définition Un mot u sur l'alphabet A est une suite finie $u_0u_1\cdots u_{n-1}$ de lettres de A. L'entier n est la longueur de u, notée |u|.

Le **plus petit** mot est le **mot vide**, de longueur 0, noté ε .

Dans ce cours, on **indexe les lettres** des mots en partant de 0. Ainsi u_i , ou encore u[i], désigne la $i+1^e$ lettre du mot u.

Remarque Attention, certains indexent parfois à partir de 1.

L'ensemble de tous les mots sur l'alphabet A est noté A^* .

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, ...\}$$

Concaténation

Définition La **concaténation** de deux mots u et v sur l'alphabet A est le mot $u \cdot v$, parfois abrégé uv, de longueur |u| + |v|, obtenu en juxtaposant les deux mots.

$$\begin{aligned} \operatorname{si} u &= u_0 \cdots u_m \\ \operatorname{et} v &= v_0 \cdots v_n \\ \operatorname{alors} u \cdot v &= u_0 \cdots u_m v_0 \cdots v_n \end{aligned}$$

Concaténation

Définition La **concaténation** de deux mots u et v sur l'alphabet A est le mot $u \cdot v$, parfois abrégé uv, de longueur |u| + |v|, obtenu en juxtaposant les deux mots.

$$\begin{aligned} \operatorname{si} u &= u_0 \cdots u_m \\ \operatorname{et} v &= v_0 \cdots v_n \\ \operatorname{alors} u \cdot v &= u_0 \cdots u_m v_0 \cdots v_n \end{aligned}$$

On note u^n la puissance n^e de u, la **concaténation** de n copies de u.

$$u^{0} = \varepsilon$$

$$u^{1} = u$$

$$u^{2} = uu$$

$$\vdots$$

$$u^{n} = uu \cdots u$$

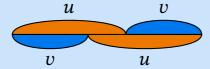
Exercice (Fine et Wilf) Montrer que pour toute paire de mots $u, v \in A^*$, les deux affirmations suivantes sont équivalentes :

- (1) les mots u et v commutent, i.e. uv = vu;
- (2) il existe un mot $w \in A^*$ dont u et v sont des puissances, i.e. $\exists m, n \in \mathbb{N}$ $u = w^m \land v = w^n$.

Exercice (Fine et Wilf) Montrer que pour toute paire de mots $u,v\in A^*$, les deux affirmations suivantes sont équivalentes :

- (1) les mots u et v commutent, i.e. uv = vu;
- (2) il existe un mot $w \in A^*$ dont u et v sont des puissances, i.e. $\exists m, n \in \mathbb{N}$ $u = w^m \land v = w^n$.

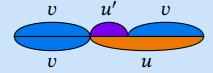
Indice



Exercice (Fine et Wilf) Montrer que pour toute paire de mots $u,v\in A^*$, les deux affirmations suivantes sont équivalentes :

- (1) les mots u et v commutent, i.e. uv = vu;
- (2) il existe un mot $w \in A^*$ dont u et v sont des puissances, i.e. $\exists m, n \in \mathbb{N}$ $u = w^m \land v = w^n$.

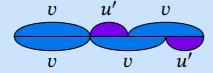
Indice



Exercice (Fine et Wilf) Montrer que pour toute paire de mots $u,v\in A^*$, les deux affirmations suivantes sont équivalentes :

- (1) les mots u et v commutent, i.e. uv = vu;
- (2) il existe un mot $w \in A^*$ dont u et v sont des puissances, i.e. $\exists m, n \in \mathbb{N}$ $u = w^m \land v = w^n$.

Indice



Facteurs

La **concaténation** compose les mots pour en former de nouveaux. On peut aussi **décomposer les mots**, les factoriser, en **facteurs**.

Facteurs

La **concaténation** compose les mots pour en former de nouveaux. On peut aussi **décomposer les mots**, les factoriser, en **facteurs**.

Définition Soient u , v et w trois mots de A^* :

- 1. le mot v est un facteur du mot uvw;
- 2. le mot v est un préfixe du mot vw;
- 3. le mot v est un suffixe du mot uv.

On ajoute le qualificatif **propre** lorsqu'on demande que les deux mots soient distincts.

Facteurs

La **concaténation** compose les mots pour en former de nouveaux. On peut aussi **décomposer les mots**, les factoriser, en **facteurs**.

Définition Soient u , v et w trois mots de A^* :

- 1. le mot v est un facteur du mot uvw;
- 2. le mot v est un préfixe du mot vw;
- 3. le mot v est un suffixe du mot uv.

On ajoute le qualificatif **propre** lorsqu'on demande que les deux mots soient distincts.

Le mot vide ε est **préfixe**, **suffixe** et **facteur** de chaque mot de A^* .

serttel te stoM

Définition L'image miroir u^R d'un mot u de A^* est le mot obtenu en lisant u de droite à gauche, i.e. si $u=u_0\cdots u_{n-1}$ alors $u^R=u_{n-1}\cdots u_0$.

serttel te stoM

Définition L'image miroir u^R d'un mot u de A^* est le mot obtenu en lisant u de droite à gauche, i.e. si $u=u_0\cdots u_{n-1}$ alors $u^R=u_{n-1}\cdots u_0$.

Un **palindrome** est un mot $u \in A^*$ égal à son image miroir : $u = u^R$.

Exemples kayak monunom romausummusuamor 선생생선

serttel te stoM

Définition L'image miroir u^R d'un mot u de A^* est le mot obtenu en lisant u de droite à gauche, i.e. si $u=u_0\cdots u_{n-1}$ alors $u^R=u_{n-1}\cdots u_0$.

Un **palindrome** est un mot $u \in A^*$ égal à son image miroir : $u = u^R$.

Exemples kayak mon⊔nom roma⊔summus⊔amor 선생생선

On note $|u|_x$ le nombre d'occurrences de $x \in A$ dans le mot $u \in A^*$.

Exercice (Carton) Soit (u_i) une suite de mots sur l'alphabet $A = \{a, b\}$ définie par récurrence par

$$\begin{cases} u_0 = a \\ u_1 = b \\ u_{n+2} = u_{n+1}u_n & \forall n \geqslant 0. \end{cases}$$

- 1. Montrer que ba est un suffixe de u_{2n} quand $n \ge 1$ et que ab est un suffixe de u_{2n+1} quand $n \ge 1$;
- 2. Montrer que le mot v_n obtenu en supprimant les deux dernières lettres de u_{n+2} est toujours un palindrome.

Langage

Définition Un langage sur l'alphabet A est un ensemble de mots sur cet alphabet, $L \subseteq A^*$.

Exemple Les langages vide \emptyset et plein A^* , le langage $\{a^nb^n|n\in\mathbb{N}\}$.

Langage

Définition Un langage sur l'alphabet A est un ensemble de mots sur cet alphabet, $L \subseteq A^*$.

Exemple Les langages vide \emptyset et plein A^* , le langage $\{a^nb^n|n\in\mathbb{N}\}$.

Remarque Tout **langage** sur A est une **partie** de A^* .

Langage

Définition Un langage sur l'alphabet A est un ensemble de mots sur cet alphabet, $L \subseteq A^*$.

Exemple Les langages vide \emptyset et plein A^* , le langage $\{a^nb^n|n\in\mathbb{N}\}$.

Remarque Tout **langage** sur A est une **partie** de A^* .

On étend la notion de **concaténation** aux langages.

Définition Soient L_1 et L_2 deux langages sur A. La concaténation, ou produit, de L_1 et L_2 est le langage $L_1 \cdot L_2$, aussi noté L_1L_2 , tel que

$$L_1L_2 = \{uv | u \in L_1 \land v \in L_2\} \quad .$$

Opérations booléennes

On peut combiner les langages pour en créer de nouveaux.

Définition Soient L_1 et L_2 deux langages sur A. On définit les opérations booléennes suivantes :

$$\begin{array}{l} L_1+L_2=L_1\cup L_2=\{u\in A^*|u\in L_1\vee u\in L_2\} & \text{(Union)}\\ L_1\cap L_2=\{u\in A^*|u\in L_1\wedge u\in L_2\} & \text{(Intersection)}\\ \overline{L_1}=A^*\setminus L_1=\{u\in A^*|u\not\in L_1\} & \text{(Complément)}\\ L_1\setminus L_2=\{u\in A^*|u\in L_1\wedge u\not\in L_2\} & \text{(Différence)} \end{array}$$

$$\emptyset$$
 est l'**élément neutre** pour l'**union** : $L + \emptyset = \emptyset + L = L$

$$\forall L \subseteq A^*$$
.

$$\{\varepsilon\}$$
 est l'**élément neutre** pour le **produit** : $L\{\varepsilon\} = \{\varepsilon\}L = L$

$$\forall L \subseteq A^*$$
.

Exercice Soient A un alphabet, L le langage des mots de longueur paire de A^* et L' le langage des mots de longueur impaire de A^* . Calculer les langages suivants : L + L', LL', LL, L'L, L'L', L, L'L'.

Étoile

On note L^n la puissance n^e de L, la **concaténation** de n copies de L.

$$\begin{cases} L^0 = \{\varepsilon\} \\ L^{n+1} = LL^n & \forall n \in \mathbb{N} \end{cases}$$

Remarque Attention, en général L^n est différent de $\{u^n | u \in L\}$!

Étoile

On note L^n la puissance n^e de L, la **concaténation** de n copies de L.

$$\begin{cases} L^0 = \{\varepsilon\} \\ L^{n+1} = LL^n & \forall n \in \mathbb{N} \end{cases}$$

Remarque Attention, en général L^n est différent de $\{u^n | u \in L\}$!

Définition L'**étoile** d'un langage L sur A est le langage $L^* = \cup_{n\geqslant 0} L^n$.

La notation A^* pour le **langage plein** est compatible avec cette notation en considérent A comme le langage des **mots à une lettre**.

Étoile

On note L^n la puissance n^e de L, la **concaténation** de n copies de L.

$$\begin{cases} L^0 = \{\varepsilon\} \\ L^{n+1} = LL^n & \forall n \in \mathbb{N} \end{cases}$$

Remarque Attention, en général L^n est différent de $\{u^n | u \in L\}$!

Définition L'**étoile** d'un langage L sur A est le langage $L^* = \cup_{n\geqslant 0} L^n$.

La notation A^* pour le langage plein est compatible avec cette notation en considérent A comme le langage des mots à une lettre.

On note L^+ le langage $LL^* = \bigcup_{n>0} L^n$.

Exercice Décrire l'étoile de chacun des langages suivants :

$$L_0 = \{a\}$$

$$L_1 = \{a, ba\}$$

$$L_2 = \{a^n b | n \in \mathbb{N}\}$$

$$L_3 = \emptyset$$

Quotient

L'opération de quotient sera très utile pour étudier les automates.

Définition Le quotient gauche d'un langage $L \subseteq A^*$ par un mot $u \in A^*$ est le langage $u^{-1}L = \{v \in A^* | uv \in L\}$.

Définition Le quotient droit d'un langage $L \subseteq A^*$ par un mot $u \in A^*$ est le langage $Lu^{-1} = \{v \in A^* | vu \in L\}$.

Ces notations sont étendues aux langages par

$$K^{-1}L = \{ v \in A^* | \exists u \in K \quad uv \in L \}$$

$$LK^{-1} = \{ v \in A^* | \exists u \in K \quad vu \in L \}$$

Monoïde

Définition Un monoïde est un ensemble E muni d'une operation interne

• associative et d'un élément neutre $1 \in E$, i.e., pour tout $x, y, z \in E$,

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
$$x \cdot 1 = 1 \cdot x = x$$

Le langage A^* muni de la concaténation et du mot vide ε est un monoïde.

Un sous-monoïde de A^* est un langage stable par concaténation.

Le **plus petit** sous-monoïde contenant $L \subseteq A^*$ est L^* .

Décrire un langage

Énumération Lister les éléments du langage

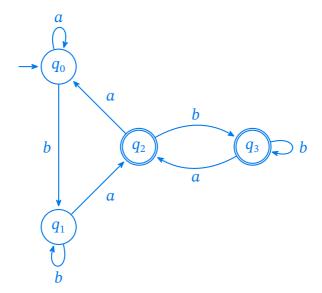
En langue naturelle Décrire des mots avec des mots

«Les mots sur l'alphabet $\{a,b\}$ qui contiennent deux fois plus de a que de b.»

Définition/formule À l'aide d'une formule mathématique

$$L = \{ u \in \{0, 1\}^* | |u|_0 < 3|u|_1 + 2 \}$$

Décrire un langage: automates finis



Décrire un langage: expressions rationnelles

Une expression rationnelle décrit un langage à partir du langage vide \emptyset , des langages à une lettre $\{x\}$ et des opérations de produit, somme et étoile.

La syntaxe est simplifiée pour une écriture plus lisible :

$$E, F \coloneqq \emptyset \mid x \mid EF \mid E + F \mid E^* \mid (E)$$

$$(a+b)^*ab(a+b)^*ba(a+b)^*$$

En pratique

```
$ grep '[bl].*fr.g$' < /usr/share/dict/words
bullfrog
leapfrog</pre>
```

grep affiche les lignes qui appartiennent au langage.

« Les chaînes contenant b ou 1 puis, plus loin, fr, une lettre, puis g. »