TD1 — Alphabets, Mots, Langages

Ex1 Déterminer l'ensemble des préfixes et suffixes du mot caaba. Combien possède-t-il de facteurs?

- **Ex2** Démontrer que $(uv)^R = v^R u^R$ pour tous mots $u, v \in A^*$.
- **Ex3** Démontrer qu'il n'existe pas de mot $u \in \{a, b\}^*$ tel que au = ub.

Ex4 Soient les trois langages $X = \{ab, a\}$, $Y = \{bb, ba\}$ et $Z = \{b, aa, aba\}$. Calculer les langages suivants: XY, X^* , X + Y, $X^2 \setminus Z$.

Ex5. Opérations sur les langages Soient X, Y et Z trois langages sur un même alphabet.

(a) Démontrer les propriétés suivantes :

$$-X(Y+Z) = XY + XZ$$
;

$$- \ X \subseteq Y \Rightarrow X^* \subseteq Y^* \; ;$$

$$-(X^*)^* = X^*$$
;

$$-(X+Y)^* = (X^*Y^*)^*;$$

(b) Comparer les ensembles suivants (Justifier) :

$$-(XY)^* \text{ et } X^*Y^*;$$

$$-(X \cup Y)^*$$
 et $X^* \cup Y^*$.

- **Ex6. Codes** Un langage $X \subseteq A^*$ est un code si pour tous entiers m, n et toute suite $u_1, \dots, u_m, v_1, \dots, v_n$ de mots de X, l'égalité $u_1u_2 \cdots u_m = v_1v_2 \cdots v_n$ implique les égalités m = n et $u_i = v_i$ pour tout $1 \le i \le n$.
 - (a) Identifier les codes parmi les langages suivants. Justifier.

$$-X_1 = \{a, ab\};$$

$$- X_2 = \{a, ab, ba\};$$

$$- X_3 = \{ab, bc, ca\}.$$

- **(b)** Démontrer qu'un langage $\{u, v\}$ de deux mots est un code si et seulement si $uv \neq vu$;
- (c) Démontrer l'affirmation suivante. Si, pour tous éléments $u, v \in L$, le mot u n'est jamais un préfixe propre du mot v alors L est un code.