TD3 — Automates finis déterministes (suite)

Ex1. Chifoumi Alice et Bob jouent à pierre-feuille-ciseaux. Le premier à marquer 2 points remporte la partie. Afin de se concentrer sur leurs stratégies, ils décident de confier le décompte des points à un automate fini déterministe. L'automate lit un mot sur l'alphabet {\(\cup, \cup, \cap \)}^2, compte les points en prenant en compte les égalités et accepte lorsque la partie est terminée et qu'un joueur a gagné. L'état d'acceptation permet de connaître le joueur gagnant.

- (a) L'alphabet est un peu trop gros! Proposer un alphabet alternatif à 3 états;
- (b) Terminer la modélisation du problème et construire l'automate fini déterministe;
- (c) Décrire le langage reconnu par l'automate par une expression régulière.

Ex2 Parmi les langages suivants, identifier ceux qui sont reconnaissables et ceux qui ne le sont pas. Justifier en construisant un AFD ou en démontrant la non reconnaissabilité.

- (a) Les mots sur l'alphabet {0, 1} dont la somme des chiffres est au plus 3;
- **(b)** L'écriture binaire des nombres qui codent une puissance de 2 ;
- (c) Les mots sur l'alphabet $\{o, x\}$ pour lesquels tout bloc de o est de longueur au moins 3;
- (d) Les mots sur l'alphabet $\{a, b, c\}$ qui contiennent au moins autant de b que de a;
- (e) Les palindromes sur l'alphabet $\{o, x\}$.

Ex3 Soit L un langage reconnaissable et L' le langage composé des mots de L qui ne sont préfixe propre d'aucun mot de L. Démontrer que L' est reconnaissable et proposer un algorithme pour construire un AFD pour L' à partir d'un AFD pour L donné en entrée.

Ex4. Codage unaire Dans cet exercice, l'alphabet contient une unique lettre notée a. Sur cet alphabet, il existe exactement un mot a^n pour chaque longueur $n \geqslant 0$. Un langage $L \subseteq a^*$ code l'ensemble d'entiers $\{n \in \mathbb{N} | a^n \in L\}$. Un ensemble d'entiers est reconnaissable en unaire s'il est codé par un langage reconnu par un automate fini déterministe.

- (a) Démontrer que tout ensemble fini d'entiers est reconnaissable en unaire;
- **(b)** Démontrer que toute progression linéaire d'entiers $\{an + b | n \in \mathbb{N}\}$ est reconnaissable en unaire ;
- (c) Caractériser la forme d'un automate fini déterministe émondé sur cet alphabet;
- (d) En déduire une caractérisation des ensembles d'entiers reconnaissables en unaire;
- (e) L'ensemble des puissances de 2 est-il reconnaissable en unaire?
- **Exs** Un langage L est clos par préfixe si tout préfixe u d'un mot $uv \in L$ appartient lui aussi à L.
 - (a) Construire des exemples d'AFD reconnaissant des langages clos par préfixes;
 - **(b)** Proposer une condition nécessaire et suffisante pour qu'un AFD reconnaisse un langage clos par préfixe. Justifier;
 - (c) Proposer un algorithme pour tester si un AFD reconnaît un langage clos par préfixe.
- **Ex6** Proposer un algorithme qui transforme un AFD donné en entrée, reconnaissant un langage L, en un AFD qui reconnaît le plus grand sous-langage $K \subseteq L$ clos par préfixe.