
TD4 — Automates finis non-déterministes

Ex1 Pour chacun des trois automates finis non-déterministes (AFN) suivants :

- (a) identifier pourquoi l'automate n'est pas déterministe;
- **(b)** identifier les mots acceptés parmi : ε , aba, aa, ab^3 ;
- (c) décrire le langage reconnu par l'automate.

Ex2 Construire un AFN sur l'alphabet $\{a, b\}$ qui reconnaît le langage des mots se terminant par abaa.

Ex3. Mesurer les mots Montrer que l'ensemble des longueurs des mots d'un langage reconnaissable est reconnaissable en unaire, *i.e.* si $L \in \operatorname{Rec} A^*$ alors $\{a^{|u|} | u \in L\} \in \operatorname{Rec} a^*$.

Ex4. Automate des parties L'automate des parties de l'AFN $\mathcal{A} = (Q, A, T, I, F)$ est l'automate fini déterministe $(\mathcal{P}(Q), A, \delta, I, F')$ où $\delta(X, x) = \delta^*(X, x)$ pour tout $X \subseteq Q$ et $x \in A$ et $F' = \{X \subseteq Q | X \cap F \neq \emptyset\}$. La fonction δ^* est la fonction de transition étendue de l'AFN \mathcal{A} .

- (a) Discuter des notations $X \in \mathcal{P}(Q)$ et $X \subseteq Q$, ainsi que de la finitude de $\mathcal{P}(Q)$.
- **(b)** Rappeler la définition de la fonction de transition étendue δ^* pour un AFN.
- (c) Soit $X \subseteq Q$ et $u \in A^*$. Montrer, par récurrence sur la longueur de u, que si $q' \in \delta^*(X, u)$ alors il existe un chemin étiqueté par u, dont l'état de départ q est dans X et dont l'état d'arrivée est q'.
- (d) En déduire qu'il existe un chemin d'un état $X \subseteq Q$ à un état $Y \subseteq Q$ étiqueté par un mot $u \in A^*$ dans l'automate des parties si et seulement si Y est l'ensemble des états $q' \in Q$ qui sont l'état d'arrivée d'un chemin étiqueté par u dont l'état de départ est un état $q \in X$.
- **(e)** En pratique, on ne construit pas l'automate des parties au complet mais uniquement sa partie accessible. Proposer un algorithme en pseudo-code pour cette construction.
- (f) Quel est le nombre maximal d'états de l'automate des parties d'un automate à n états?

Ex5 Déterminiser les trois automates du premier exercice en utilisant l'algorithme ci-dessus.