
Electrical Engineering

Sine-wave: definitions

II – Power in sinusoidal regime

- A sinusoidal quantity s(t) (voltage, current, flux or magnetic field) is written:

            

 

 

 

    

         

𝒔 𝒕 = ෡𝑺. 𝐜𝐨𝐬(𝝎𝒕 +/−𝝋)

𝒔 𝒕 = 𝑺 𝟐. 𝐜𝐨𝐬(𝝎𝒕 +/−𝝋)

Peak value (max)

- s(t): quantity which evolves with time in sinusoidal form

- S: RMS value of the quantity,

- ෡𝑺: maximum value reached by the quantity s(t) => ෡ 𝑺=𝑆.√2,

-  : electrical pulsation in rad/s of the magnitude, 𝜔= 2.𝜋.𝑓 = 2.𝜋/𝑇,

- f: signal frequency and T: signal period,

-  : phase at origin (at t = 0).



Electrical Engineering

Single-phase

II – Power in sinusoidal regime

- Most of the world's electrical energy is generated, transmitted and distributed in the form of 
sinusoidal voltages.

- Any periodic signal can be studied by decomposing it down into sinusoidal signals using a 
Fourier transform.

         

          

          

       

                

 

 

i(t)

Generator

Electron flow

Conductor

Load 
(receptor) v 𝒕 = ෡𝑽. 𝒔𝒊𝒏(𝝎𝒕)

i 𝒕 = ෠𝑰. 𝒔𝒊𝒏(𝝎𝒕 − 𝝋)

v(t)

Angle (hidden scale)

Vmax

Imax

v(t)

i(t)



Electrical Engineering

Single-phase – Average and RMS values

II – Power in sinusoidal regime

- The AVERAGE VALUE of any current (same for the voltage) is 
the value that a direct current carrying the same amount of 
electricity would have.

𝑰𝑴𝑶𝒀 =
𝟏

𝑻
න 𝒊 𝒕 𝒅𝒕

- The RMS (Root Main square) VALUE of any current is the 
value that a direct current carrying the same amount of 
energy would have.

𝑰𝑹𝑴𝑺 =
𝟏

𝑻
න 𝒊𝟐 𝒕 𝒅𝒕 𝐼𝑅𝑀𝑆 =

𝐼𝑀𝐴𝑋

2

𝐼𝑀𝑂𝑌 = 0

IRMS



Electrical Engineering

II – Power in sinusoidal regime

- Exercise: demonstrate the expression of 
Imoy and IRMS

Average value

• 𝐼𝑀𝑂𝑌 =
1

𝑇
0׬

𝑇
𝑖(𝑡) 𝑑𝑡

• 𝐼𝑀𝑂𝑌 =
1

𝑇
0׬

𝑇
𝐼𝑀𝐴𝑋. sin(𝜔 𝑡) 𝑑𝑡

• 𝐼𝑀𝑂𝑌 =
1

𝑇
𝐼𝑀𝐴𝑋.

−cos(𝜔𝑡)

𝜔 0

𝑇

• 𝐼𝑀𝑂𝑌 =
𝐼𝑀𝐴𝑋

𝜔𝑇
. −cos(𝜔𝑇) +cos(0)

• 𝐼𝑀𝑂𝑌 =
𝐼𝑀𝐴𝑋

𝜔𝑇
. −1 + 1

• 𝑰𝑴𝑶𝒀 = 𝟎

RMS value

• 𝐼𝐸𝐹𝐹 =
1

𝑇
0׬

𝑇
𝑖2(𝑡) 𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

1

𝑇
0׬

𝑇
𝑖2(𝑡) 𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

1

𝑇
0׬

𝑇
(𝐼𝑀𝐴𝑋. sin(𝜔 𝑡))2𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

1

𝑇
0׬

𝑇
(𝐼𝑀𝐴𝑋)2. (sin(𝜔 𝑡))2𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

1

𝑇
0׬

𝑇
(𝐼𝑀𝐴𝑋)2 1−cos 2𝜔𝑡

2
𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

𝐼𝑀𝐴𝑋
2

2.𝑇
0׬

𝑇
1 − cos 2𝜔𝑡 𝑑𝑡

• 𝐼𝐸𝐹𝐹
2 =

𝐼𝑀𝐴𝑋
2

2.𝑇
t −

sin(2𝜔𝑡)

2𝜔 0

𝑇

• 𝐼𝐸𝐹𝐹
2 =

𝐼𝑀𝐴𝑋
2

2

T−0

𝑇
−

sin 2𝜔𝑇 −sin(0)

2𝜔𝑇

• 𝐼𝐸𝐹𝐹
2 =

𝐼𝑀𝐴𝑋
2

2
1 −

0−0

4𝜋

• 𝐼𝐸𝐹𝐹
2 =

𝐼𝑀𝐴𝑋
2

2

• 𝑰𝑬𝑭𝑭 =
𝑰𝑴𝑨𝑿

𝟐

𝑐𝑜𝑠2𝑎 = 1 − 2𝑠𝑖𝑛²𝑎  et  𝑠𝑖𝑛2𝑎 =
1−𝑐𝑜𝑠2𝑎

2

Single-phase – Average and RMS values



Electrical Engineering

Single-phase – Fresnel vector representation

II – Power in sinusoidal regime

- Associated with s(t) is a vector 𝑺 known as the Fresnel vector, of norm S (RMS value) rotating 
around the origin point O at an angular frequency w.

  

  

 

      

      

 

 

 

- Since all signals have the same angular frequency w, vectors in the same Fresnel diagram 
rotate at the same speed. Therefore, they are represented at t = 0.

y

x



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Complex representation:
  

  

 

      

      

 

 

 

𝑺. 𝐜𝐨𝐬 𝝋 + 𝒋. 𝑺. 𝐬𝐢𝐧 𝝋 = 𝑺. 𝒆𝒋𝝋 = 𝑺

- Reminder: Euler’s formula

𝑒𝑖𝑥 = 𝑐𝑜𝑠 𝑥 + 𝑖. 𝑠𝑖𝑛 𝑥

- Complex quantity

ቐ
𝒔 𝒕 = 𝑺 𝟐. 𝒆𝒋 𝝎𝒕+𝝋

𝒔 𝒕 = 𝕽𝒆 𝒔 𝒕

- Complex amplitude

𝒔 = 𝑺 𝟐. 𝒆𝒋𝝎𝒕

where 𝑺 = 𝑺. 𝒆𝒋𝝋 = 𝑺; 𝝋



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Sum:

𝑺 = σ 𝑺𝒊. 𝐜𝐨𝐬 𝝋𝒊
𝟐 + σ 𝑺𝒊. 𝐬𝐢𝐧 𝝋𝒊

𝟐 𝐭𝐚𝐧 𝝋 =
σ 𝑺𝒊.𝐬𝐢𝐧 𝝋𝒊

σ 𝑺𝒊.𝐜𝐨𝐬 𝝋𝒊

  

  

  
 
      

 

  
 
      

 

 

  
 

 

  
 

  
 

 

  
 

  
 

  
 

  
 
      

 

  
 
      

 

  
 
      

 

  
 
      

 



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Derivate: 𝑠 𝑡 = መ𝑆. 𝑒𝑗 𝜔𝑡+𝜑 = መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑

𝑑𝑠 𝑡

𝑑𝑡
=

𝑑 መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑

𝑑𝑡



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Derivate: 𝑠 𝑡 = መ𝑆. 𝑒𝑗 𝜔𝑡+𝜑 = መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑

𝑑𝑠 𝑡

𝑑𝑡
=

𝑑 መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑

𝑑𝑡
𝑑𝑠 𝑡

𝑑𝑡
= መ𝑆. −𝜔. sin 𝜔𝑡 + 𝜑 + 𝑗. 𝜔. cos 𝜔𝑡 + 𝜑

𝑑𝑠 𝑡

𝑑𝑡
= 𝑗. 𝜔. መ𝑆. −

sin 𝜔𝑡 + 𝜑

𝑗
+ cos 𝜔𝑡 + 𝜑

𝑑𝑠 𝑡

𝑑𝑡
= 𝑗. 𝜔. መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗 sin 𝜔𝑡 + 𝜑

𝒅𝒔 𝒕

𝒅𝒕
= 𝒋. 𝝎. 𝒔 𝒕

Derivative with respect to time: rotation of + /2 rad in the complex plane

𝒅𝒔 𝒕

𝒅𝒕
= 𝒋. 𝝎. 𝒔 𝒕 = 𝐒. 𝛚; 𝝋 +

𝝅

𝟐



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Integrate: 𝑠 𝑡 = መ𝑆. 𝑒𝑗 𝜔𝑡+𝜑 = መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑

න 𝑠 𝑡 . 𝑑𝑡 = න መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑 . 𝑑𝑡



Electrical Engineering

Single-phase – Complex representation

II – Power in sinusoidal regime

- Integrate: න 𝑠 𝑡 . 𝑑𝑡 = න መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. መ𝑆. sin 𝜔𝑡 + 𝜑 . 𝑑𝑡

න 𝑠 𝑡 . 𝑑𝑡 = መ𝑆. න cos 𝜔𝑡 + 𝜑 . 𝑑𝑡 + 𝑗. න sin 𝜔𝑡 + 𝜑 . 𝑑𝑡 = መ𝑆.
sin 𝜔𝑡 + 𝜑

𝜔
+ 𝑗.

−cos 𝜔𝑡 + 𝜑

𝜔

න 𝑠 𝑡 . 𝑑𝑡 =
መ𝑆

𝑗𝜔
. 𝑗. sin 𝜔𝑡 + 𝜑 + 𝑗. 𝑗. −cos 𝜔𝑡 + 𝜑

න 𝑠 𝑡 . 𝑑𝑡 =
መ𝑆

𝑗𝜔
. 𝑗. sin 𝜔𝑡 + 𝜑 + cos 𝜔𝑡 + 𝜑

න 𝑠 𝑡 . 𝑑𝑡 =
1

𝑗𝜔
. መ𝑆. cos 𝜔𝑡 + 𝜑 + 𝑗. sin 𝜔𝑡 + 𝜑

න 𝑠 𝑡 . 𝑑𝑡 =
𝑠 𝑡

𝑗. 𝜔

Time integration: rotation of - /2 rad in the complex plane

න 𝒔 𝒕 . 𝒅𝒕 =
𝒔 𝒕

𝒋. 𝝎
=

𝑺

𝝎
; 𝝋 −

𝝅

𝟐



Electrical Engineering

Single-phase – Complex impedances

II – Power in sinusoidal regime

- Let us consider a passive linear dipole, in receptor convention, subjected 
to a sinusoidal voltage v(t) and flowed by a sinusoidal current i(t):

  

    
 

 

   
 

 

 

    

    

- We write:

ቐ
𝑣 𝑡 = 𝑉 2. cos(𝜔𝑡 + 𝜑𝑉)

𝑖 𝑡 = 𝐼 2. cos(𝜔𝑡 + 𝜑𝐼)

൝
𝑉 = 𝑉. 𝑒𝑗𝜑𝑉 = 𝑉; 𝜑𝑉

𝐼 = 𝐼. 𝑒𝑗𝜑𝐼 = 𝐼; 𝜑𝐼



Electrical Engineering

Single-phase – Complex impedances

II – Power in sinusoidal regime

- The complex impedance is defined as:

  

    
 

 

   
 

 

 

  

 
 

𝒁 =
𝑽

𝑰
= 𝑹 + 𝒋𝑿 = 𝒁 = 𝒁. 𝒆𝒋𝝋

- where:

-  : phase shift angle of voltage with respect to current:

- R: resistance in Ohms of the dipole, real part of the 
complex impedance:

- X : reactance in Ohms of the dipole, imaginary part 
of the complex impedance

- Z : dipole impedance 𝑍 = 𝑍 =
𝑉

𝐼

𝜑 = 𝐴𝑟𝑔𝑍 = 𝜑𝑉 − 𝜑𝐼

𝑅 = ℜ𝑒 𝑍 = 𝑍. 𝑐𝑜𝑠𝜑

𝑋 = 𝔍𝑚 𝑍 = 𝑍. 𝑠𝑖𝑛𝜑



Electrical Engineering

Single-phase – Complex impedances

II – Power in sinusoidal regime

  

 
 

𝒁 =
𝑽

𝑰
= 𝑹 + 𝒋𝑿 = 𝒁 = 𝒁. 𝒆𝒋𝝋

- where:

-  : phase shift angle of voltage with respect to current:

- Z : dipole impedance 𝑍 = 𝑍 =
𝑉

𝐼

𝜑 = 𝐴𝑟𝑔𝑍 = 𝜑𝑉 − 𝜑𝐼

- If  > 0, the voltage leads the current, 
impedance or load is said to be inductive.

(Motors, Transformers, Electromagnets)

- If  < 0, the voltage lags the current, 
impedance or load is said to be capacitive.

(Capacitors)

- If  = 0, the voltage in in phase with the 
current, impedance or load is said to be 
resistive.

(Resistors, Furnaces, Regulated baths)



Electrical Engineering

Single-phase – linear dipoles

II – Power in sinusoidal regime

Resistor Ideal coil Ideal capacitor

Definition

An electrical resistor is an

electrical dipole that opposes the

flow of current

A “    ” is an electrical dipole that

opposes the variation of electric

current and can store energy in

electromagnetic form.

A “         ” is an electrical

dipole that resists variation in the

voltage to which it is subjected,

and can store energy in

electrostatic form.

Characteristics R : resistance in  (Ohm) L : Coil inductance in H (Henry) C : Capacitance in F (Farad)

AC regime 𝑉𝑅 𝑡 = 𝑅. 𝑖(𝑡) 𝑉𝐿 𝑡 = 𝐿.
𝑑𝑖(𝑡)

𝑑𝑡
𝑉𝐶 𝑡 =

1

𝐶
. න 𝑖 𝑡 . 𝑑𝑡

Symbolic representation in 

receptor convention

Sinusoidal regime 𝑉𝑅 = 𝑅. 𝐼 𝑉𝐿 = 𝑗𝐿𝜔. 𝐼 𝑉𝐶 =
1

𝑗𝐶𝜔
. 𝐼

Impedance 𝑍 = R = 𝑅; 0 𝑍 = jLω = 𝐿𝜔;
𝜋

2
𝑍 =

1

𝑗𝐶𝜔
=

1

𝑗𝐶𝜔
; −

𝜋

2

 
 

  

 

  

  

 

  

    



Electrical Engineering

Single-phase – Fresnel (vector) representation

II – Power in sinusoidal regime

    

    

    

    

    

    

𝑉𝑅 = [𝑅. 𝐼; 0]

𝑉𝐿 = [𝐿𝜔. 𝐼;
𝜋

2
] 

𝑉𝐶 = [
𝐼

𝐶𝜔
; −

𝜋

2
]

VR and I are in phase

VL leads I in quadrature

VC lags I in quadrature



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

- Instantaneous power (in W):

=> exchange of energy, heat or work, between the network and the dipole at each instant

𝒑 𝒕 = 𝒗 𝒕 × 𝒊 𝒕

- Active power or average power (in W) – General expression:

=> Balance of energy exchanged between the network and the dipole over a period T

𝑷 =< 𝒑 𝒕 >=
𝟏

𝑻
න

𝟎

𝑻

𝒑 𝒕 . 𝒅𝒕 =
𝟏

𝑻
න

𝟎

𝑻

𝒗 𝒕 . 𝒊(𝒕). 𝒅𝒕

=> If P > 0, the dipole consumes energy, it operates a receptor

=> If P < 0, the dipole supplies energy, it operates a generator



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

- Linear receptor in sinusoidal regime

- Through which a current i(t) flows

𝒊(𝒕)  = 𝑰 𝟐 × 𝒔𝒊𝒏(𝝎𝒕)

- Subjected to a voltage v(t)

𝒗(𝒕)  = 𝑽 𝟐 × 𝐬𝐢𝐧(𝝎𝒕 + 𝝋) 

 positive, voltage ahead of current, inductive receiver
 zero, voltage in phase with current, resistive receiver
 negative, voltage lagging current, capacitive receiver

- Instantaneous power 𝒑 𝒕 = 𝒗(𝒕) × 𝒊(𝒕)



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

-400

-300

-200

-100

0

100

200

300

400

0 30 60 90 120 150 180 210 240 270 300 330 360

C
o
u
ra

n
t 
e

n
 A

 e
t 
T

e
n
s
io

n
 e

n
 V

Courant et tension dans un récepteur en régime sinusoïdal

I L1 V L1

V = 230V

I = 200A
  = 30°

𝑖(𝑡)  = 𝐼 2 × sin(𝜔𝑡)

𝑣(𝑡)  = 𝑉 2 × sin(𝜔𝑡 + 𝜑)

- Linear receptor in sinusoidal regime: current and voltages



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

- Linear receptor in sinusoidal regime

- Instantaneous power:

𝑝 𝑡 = 𝑣(𝑡) × 𝑖(𝑡)

𝑝 𝑡 = 𝑉 2 × sin(𝜔𝑡 + 𝜑) × 𝐼 2 × sin(𝜔𝑡) 

𝑝 𝑡 = 2 × 𝑉 × 𝐼 × sin 𝜔𝑡 + 𝜑 × sin 𝜔𝑡

sin 𝑎 × sin 𝑏 =
1

2
(cos 𝑎 − 𝑏 + cos(𝑎 + 𝑏))

𝑝 𝑡 = 2 × 𝑉 × 𝐼 ×
1

2
(cos 𝜔𝑡 + 𝜑 − 𝜔𝑡 + cos(𝜔𝑡 + 𝜑 + 𝜔𝑡))

𝒑 𝒕 = 𝑽 𝑰 𝒄𝒐𝒔 𝝋 + 𝑽 𝑰 𝒄𝒐𝒔(𝟐 𝝎𝒕 + 𝝋)



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime
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Courant, Tension et Puissance dans un récepteur en régime sinusoïdal

I L1 V L1 P L1 P moy

VEFF = 230V

IEFF = 200A
  = 30°
P = 39,8 kW

- Linear receptor in sinusoidal regime: current, voltage and power

𝒑 𝒕 = 𝑽𝑰 𝒄𝒐𝒔 𝝋 + 𝑽𝑰 𝒄𝒐𝒔(𝟐 𝝎𝒕 + 𝝋)



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

- Instantaneous power (in W):

=> exchange of energy, heat or work, between the network and the dipole at each instant

𝒑 𝒕 = 𝒗 𝒕 × 𝒊 𝒕

- Active power or average power (in W): 𝑷 =< 𝒑 𝒕 > = 𝑽 𝑰 𝒄𝒐𝒔 𝝋

=> Balance of energy exchanged between the network and the dipole over a period T

- Apparent power (in VA): 𝑺 = 𝑽. 𝑰

=> Design value (voltage for insulation, current for conductor cross-section)

- Power factor (general expression):

𝑭𝑷 =
𝑷

𝑺
𝐹𝑃 = 𝑐𝑜𝑠 𝜑 => Sinusoidal regime only



Electrical Engineering

Single-phase – Expressions of powers

II – Power in sinusoidal regime

- Reactive power:

- Projection of I on the axes: Ԧ𝐼 = 𝐼𝐴 + 𝐼𝑅

=> Active current:

=> Reactive current:

𝐼𝐴 = 𝐼. 𝑐𝑜𝑠 𝜑

𝐼𝑅 = 𝐼. 𝑠𝑖𝑛 𝜑

- Reminder of the active power (W):

𝑃 = 𝑉 . 𝐼. 𝑐𝑜𝑠 𝜑 = 𝑉. 𝐼𝐴

- By analogy, the reactive power (given in VAR) can be written:

𝑸 = 𝑽 . 𝑰. 𝒔𝒊𝒏 𝝋 = 𝑽. 𝑰𝑹
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II – Power in sinusoidal regime

- Relation between powers S, P and Q:

𝑷 = 𝑽 . 𝑰. 𝒄𝒐𝒔 𝝋  

𝑸 = 𝑽 . 𝑰. 𝒔𝒊𝒏 𝝋  = 𝑷. 𝒕𝒂𝒏(𝝋)

𝑺𝟐 = 𝑷𝟐 + 𝑸𝟐

- Note that: 𝑺 ≠ 𝑷 + 𝑸

- But: 𝑺 = 𝑽 𝑰∗ = 𝑷 + 𝒋𝑸
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Single-phase – Expressions of powers

II – Power in sinusoidal regime

- The resistive load (e.g. a furnace)

=>  = 0, voltage in phase with current.

=> cos( ) = 1, sin( ) = 0

=> P = V . I and Q = 0

A resistive dipole consumes no reactive power

- The inductive load (e.g. a motor)

=> The voltage leads the current,  > 0

=> sin( ) > 0, Q > 0

An inductive dipole consumes reactive power

- The capacitive load (e.g. a capacitor)

=> The voltage lags the current,  < 0

=> sin( ) < 0, Q < 0

An inductive dipole supplies reactive power
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II – Power in sinusoidal regime

- Measurement of powers

N

L

Load

V 

measurement

I measurement

A
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- Measurement of powers
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