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Electrical Engineering
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Introduction

I) Reminders (electricity) 
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III) Transformers

IV) Electric motors
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Electrical Engineering

III - Transformers

Reminders: electromagnetism

- The electrical field: an electrical charge, qA, placed at any point A in space, acts at any other point 

M in space, in the form of a vector field called the “electric field EA(M)” expressed in V.m-1

- Electrical field due to charge qA at point M

𝑬𝑨(𝑴) =
𝒒𝑨

𝟒. 𝝅. 𝜺𝟎. 𝑨𝑴𝟐 . 𝒖

EA(M) in V.m-1, qA in C, AM in m
0, vacuum permittivity: 𝜺0 = 10-9 / 36 F.m-1

- Properties of the electrical field: 

=> Inversely proportional to the square of the distance from its source. It scales with “1/r²” 

=> Additive quantity



Electrical Engineering

III - Transformers

Reminders: electromagnetism

- The magnetic field: An electrical charge, qA, located at any point A in space and moving with 

velocity “V”, acts at any other point M in space, in the form of a vector field called the “magnetic 

field BA(M)” expressed in Tesla (T).

- Magnetic field in vacuum at point M due to 

charge displacement qA

𝑩𝑨(𝑴) =
𝝁𝟎

𝟒. 𝝅
.
𝒒𝑨. 𝑽 ⋀ 𝒖

𝑨𝑴𝟐

BA(M) in Tesla, qA in C, V in m/s, AM in m
0, vacuum permeability in m.T.A.m-1, 0 = 4..10-7 m.T.A.m-1 (or H.m-1)

- Properties of the magnetic field: 

=> Inversely proportional to the square of the distance from its source. It varies in “1/r²”.  

=> Additive quantity



Electrical Engineering

III - Transformers

- The Biot and Savart’s law: The elementary part dl of an electrical circuit in P through which a 

current of intensity I flows creates the “magnetic field dBP(M)” at a point M in space

Reminders: electromagnetism

- Magnetic field at point M due to the current I 

flowing through the elementary part dl

𝑑𝐵𝑃(𝑀) =
𝜇0

4. 𝜋
.
𝐼. 𝑑𝑙⋀𝑃𝑀

𝑃𝑀3

𝒅𝑩𝑷(𝑴) =
𝝁𝟎

𝟒. 𝝅
.
𝑰. 𝒅𝒍⋀𝒖

𝒓𝟐

- Total magnetic field in M created by the electrical circuit : 𝑩 𝑴 =
𝝁𝟎

𝟒. 𝝅
. න

𝑷∈𝒄𝒊𝒓𝒄𝒖𝒊𝒕

𝑰. 𝒅𝒍⋀𝒖

𝒓𝟐



Electrical Engineering

III - Transformers

- The excitation magnetic field 𝐻: dHP(M), is related to the state of magnetic excitation of the 

medium and is given in A.m-1.

Reminders: electromagnetism

- Magnetic excitation field at point M due to the current I flowing through portion dl:

𝒅𝑯𝑷(𝑴) =
𝟏

𝟒. 𝝅
.
𝑰. 𝒅𝒍⋀𝒖

𝒓𝟐

- Total magnetic excitation field at M created by the wire through which a current I flows:

𝑯(𝑴) =
𝟏

𝟒. 𝝅
. න

𝑷∈𝒇𝒊𝒍

𝑰. 𝒅𝒍⋀𝒖

𝒓𝟐

- If 𝐻 is the excitation magnetic field, 𝐵 is the magnetic induction field: 𝐵 = 𝜇0𝜇𝑟𝐻

0 vacuum permeability, µr the relative permeability 



Electrical Engineering

III - Transformers

Reminders: electromagnetism

- The magnetic flux: The flux of induction magnetic field B across a closed surface (S) is the 

quantity 𝜙B given in Weber (Wb)

𝚽𝑩 = ඾
(𝑺)

𝑩. 𝒏𝒆𝒙𝒕. 𝒅𝑺

- The magnetic flux F is usually given by the product B.S 

- If magnetic leakage is neglected, the flux in a magnetic 

circuit is conservative

𝚽 = 𝑩. 𝑺 Analogy with the garden hose :

magnetic flux F → flow

magnetic field B → water speed

solenoid cross-section S → pipe cross-section



Electrical Engineering

III - Transformers

- Orders of magnitude

Reminders: electromagnetism

- Earth induction magnetic field: 50.10-6 T

In electrical machines:

- Induction magnetic field: 1 T à 1,5 T

- Excitation magnetic field : 1000 à 100000 A.m-1

- Magnetic flux: 10-5 à 10-3 Wb



Electrical Engineering

III - Transformers

- Ampere’s theorem: If (C) is a closed contour of space surrounding N wire conductors through 

which currents of intensities Ik flow, then the circulation of the magnetic excitation vector H along a 

closed contour l is equal to the sum of the entwined currents

Reminders: electromagnetism

ර
(C)

𝐻. 𝑑𝓁 = ෍

𝑘=1

𝑘=𝑁

𝑖𝑘 𝑯. 𝓵 = 𝑵. 𝑰

- Example:

ර
(C)

𝐻. 𝑑𝓁 = −𝑖1 + 𝑖2 + 𝑖3
- i1 is counted as negative,

- i2 and i3 are counted as positive

- i4 is outside the contour (not taken into account)



Electrical Engineering

III - Transformers

Reminders: electromagnetism

- Example: magnetic field created by a solenoid

- Inside the solenoid, far from its ends, the magnetic field 

is uniform. 

- The field lines are parallel

- They enter at the coil's SOUTH face and exit at its 

NORTH face (corkscrew rule).

N: number of turns, l : length of solenoid

𝑯 =
𝑵. 𝑰

𝒍
𝑩 = 𝝁𝟎.

𝑵𝑰

𝒍

𝑩 = 𝝁 × 𝑯

𝝁 = 𝝁𝟎 × 𝝁𝑹

- A solenoid is a straight winding with length l 

greater than its radius r.



Electrical Engineering

III - Transformers

Reminders: magnetic materials

- Materials are classified according to their magnetic susceptibility 𝜒

=> 𝜒 is related to the relative permeability through: 𝜇𝑟 = 1 + 𝜒

- Para-magnetic materials: 𝜒 > 0, between 10-3 and 10-7

=> These materials are rare and their magnetization is negligible (Al, W, Pt, Sn…)

- dia-magnetic materials: 𝜒 < 0, between 10-4 and 10-6

=> These materials are common and their magnetization is negligible ( non magnetic materials such 

as Cu, Bi, Au, Ag…)

- Ferro-magnetic materials: 𝜒 > 0, between 103 and 106

=> These are magnetic material of interest for magnetic circuits or transformer core (Fe, Ni, Co)



Electrical Engineering

III - Transformers

Reminders: magnetic materials

- Magnetic materials are characterized by their hysteresis loop

=> B=f(H) curve showing magnetizing/demagnetizing of the ferromagnetic material

     

       

  
 

  
 

  
 

  
 

   
 

   
 

   
 

   
 

O

- A ferromagnetic material that has never been magnetized will 

magnetize starting from O (“first magnetizing curve”)

- The loop is run  only in the direction of the arrows

- BS: saturation induction magnetic field

- BR: point of retentivity

=> Remanence of residual magnetism in the material

- HC: point of coercivity

=> Coercive excitation magnetic field required to remove the residual magnetism in the material

BS

-BS



Electrical Engineering

III - Transformers

Reminders: magnetic materials

- The shape of the hysteresis loop varies according to the magnetic material

Soft magnetic material Hard magnetic material

BS = 1.5 – 2T
BR< 1T
HC=1-10 A/m

BR - 1T
HC=103 A/m

Linear approximation outside 
the saturation region: B=μH



Electrical Engineering

III - Transformers

Magnetic circuits

- Materials and geometry are chosen to concentrate flux density as much as possible, thus creating 

the strongest possible induction => limitation of both mass and size/volume

- Linear homogeneous magnetic circuits:

- Homogeneous = a single magnetic material

- Linear = outside the saturation regime

- Homogeneous = constant cross section

- l (schematic) = mean field line

ර 𝑯. 𝒅𝓁 = 𝒏. 𝑰 𝑯. 𝓁 = 𝒏. 𝑰

- The nI quantity is also called magnetomotive force



Electrical Engineering

III - Transformers

Magnetic circuits

- In a linear homogeneous magnetic circuit, the material exhibits a constant permeability

- Hopkinson’s relation:

𝝁 = 𝝁𝟎𝝁𝒓

- We have shown previously that 𝚽 = 𝑩. 𝑺

- By considering the Ampere’s theorem as well, it can be shown that:

- Therefore: B= 𝝁𝑯

𝑵𝑰 = ℜ𝚽 Hopkinson’s relation, with the reluctance ℜ =
𝓁

𝝁𝑺

- The reluctance is the opposition that a ferromagnetic material produces to the establishment of 

a magnetic field

(in H-1)



Electrical Engineering

III - Transformers

Magnetic circuits: analogy with electrical circuits

Electrical circuit Magnetic circuit

Electromotive force in V : V Magnetomotive force in A.tr :  = n.I

Electrical current in A : I Magnetic flux in Wb : 

Electrical resistance in  : R

𝑅 = 𝜌 ×
𝓁

𝑆
• Electrical resistivity in .m : 
• Conductor length in m : l

• Conductor cross section in m2 : s

Magnetic reluctance: R

ℛ =
1

𝜇0 × 𝜇𝑅
×

𝓁

𝑆

• Magnetic permeability in H/m : µ
• Circuit length in m : l

• Circuit cross section in m2 : s

Ohm’s law: 𝑉 = 𝑅. 𝐼 Hopkinson’s law: 𝑛. 𝐼 = ℛ. Φ

Electrical field in V/m : E Excitation magnetic field in A/m : H

Current density in A.m-2 : 𝐽 =
I

𝑠
= 𝜎. 𝐸 Induction magnetic field in T: 𝐵 =

Φ

𝑠
= 𝜇. 𝐻



Electrical Engineering

III - Transformers

Magnetic circuits

- Lenz’s law (qualitative law): Induced currents and fields oppose the causes that gave rise to them

- Lenz’s law and Faraday’s law:

=> The induced field and current oppose the change in flux through the circuit

- Faraday’s law (quantitative law): Any flux variation produces an induced electromotive force across a 
circuit

𝒆(𝒕) = −
𝒅𝝓(𝒕)

𝒅𝒕

𝒆(𝒕) = −𝒏 ×
𝒅𝝓(𝒕)

𝒅𝒕
For n turns:

=> For a coil, an electromotive force is produced at  across each turn of the winding

(receptor convention)



Electrical Engineering

III - Transformers

Magnetic circuits

- A winding of copper wire wrapped on a magnetic circuit of ferromagnetic material forms an 

iron-core coil

- The iron-core coil:

=> transformers, electromagnets, motors



Electrical Engineering

III - Transformers

Magnetic circuits

- Consider an iron-core coil with N turns

=> Each turn is crossed by the flux 𝜙 created in the material => Total flux

- The iron-core coil:

𝜙𝑇 = 𝑁𝜙

- By considering both Hopkinson’s relation and Faraday’s law:

𝑵𝒊 = ℜ𝚽 𝒆 𝒕 = −
𝒅𝜙𝑻 𝒕

𝒅𝒕
= −𝑵

𝒅𝜙 𝒕

𝒅𝒕

- We introduce the inductance L such  that: 𝜙𝑇 = 𝐿𝑖

- With L (in H): 𝐿 =
𝑁2

ℜ
=

𝑁2𝝁𝑺

𝓁

- We retrieve the expression: 𝒆 𝒕 = −𝑳
𝒅𝒊 𝒕

𝒅𝒕



Electrical Engineering

III - Transformers

Magnetic circuits

- Mutual inductance occurs when the magnetic circuit has at least two windings

=> Each current has an influence on the flux flowing in the circuit.

- Mutual inductance: (case of the homogeneous linear magnetic circuit)

- Flux created by coil 1 (current i1) and flowing through coil 2

𝜙1→2 =
𝑁1𝑖1

ℜ
𝜙𝑇2 = 𝑁2𝜙1→2

- By analogy with the definition of the inductance: 𝜙𝑇2 =  𝑁2𝜙1→2 = 𝑀12𝑖1

- With M (in H): 𝑀12 =
𝑁1𝑁2

ℜ
𝒆𝟐 𝒕 = −𝑴𝟏𝟐

𝒅𝒊𝟏 𝒕

𝒅𝒕

- Voltage across winding k among n other windings: mutual inductances + self-inductance

−𝒆𝒌 𝒕 = 𝑴𝟏𝒌

𝒅𝒊𝟏 𝒕

𝒅𝒕
+ 𝑴𝟐𝒌

𝒅𝒊𝟐 𝒕

𝒅𝒕
+ ⋯ + 𝑴𝒏𝒌

𝒅𝒊𝒏 𝒕

𝒅𝒕
+ 𝑳

𝒅𝒊𝒌 𝒕

𝒅𝒕



Electrical Engineering

III - Transformers

Magnetic circuits

- Boucherot’s formula : Ideal coil (no losses)

        

    

        

 
 

𝑣 𝑡 = 𝑉 2. cos(𝜔𝑡)

𝑑𝜑 𝑡

𝑑𝑡
=

𝑉 2

𝑁
. cos(𝜔𝑡)

𝜑 𝑡 =
𝑉 2

𝑁
. න

0

𝑡

cos(𝜔𝑡) . 𝑑𝑡

𝜑 𝑡 =
𝑉 2

𝑁𝜔
. sin(𝜔𝑡) + 𝜑 0

- The winding is subjected to a sinusoidal voltage

=> Assumption of forced flux



Electrical Engineering

III - Transformers

Magnetic circuits

- Boucherot’s formula : Ideal coil (no losses)

𝜑 𝑡 =
𝑉 2

𝑁𝜔
. sin(𝜔𝑡) + 𝜑 0

𝜑 𝑡 =
𝑉 2

𝑁𝜔
. sin(𝜔𝑡)

𝝋 𝒕 =
𝑽 𝟐

𝑵𝝎
. 𝐜𝐨𝐬(𝝎𝒕 − ൗ𝝅

𝟐)

𝑖 𝑡 =
𝑉 2

𝐿𝜔
. cos(𝜔𝑡 − ൗ𝜋

2)

        

    

        

 
 

- φ(0)=0: no permanent magnet, no remanent flux, 

no second DC winding).

- The flux lags the current 

- The relation Nφ=Li (Hopkinson’s law) gives 

the current



Electrical Engineering

III - Transformers

Magnetic circuits

- Boucherot’s formula : Ideal coil (no losses)
൞

𝜑 𝑡 =
𝑉 2

𝑁𝜔
. 𝑐𝑜𝑠(𝜔𝑡 − ൗ𝜋

2)

𝜑 𝑡 = 𝛷𝑀 . 𝑐𝑜𝑠(𝜔𝑡 − ൗ𝜋
2)

𝑉 2

𝑁𝜔
= 𝛷𝑀

𝑉 =
𝑁. 𝜔. 𝛷𝑀

2

𝑉 =
𝑁. 2. 𝜋. 𝑓 . 𝑆. 𝐵𝑀

2

𝑉 =
2. 𝜋

2
. 𝑆. 𝑁. 𝐵𝑀 . 𝑓

𝑽 = 𝟒, 𝟒𝟒. 𝑺. 𝑵. 𝑩𝑴 . 𝒇

        

    

        

 
 



Electrical Engineering

III - Transformers

Magnetic circuits

- Boucherot’s formula : Ideal coil (no losses)

        

    

        

 
 

𝑽 = 𝟒, 𝟒𝟒. 𝑺. 𝑵. 𝑩𝑴 . 𝒇

If the flux 𝜙 of a coil is due to the current i flowing 
through it (Hopkinson's law), its maximum value 
𝜙𝑀 depends only on the RMS value of the voltage V
(at constant frequency).

The voltage imposes a flux and the winding draws 
the current accordingly



Electrical Engineering

III - Transformers

Magnetic circuits

- Defects of the iron-core coil: hysteresis losses

- Hysteresis losses correspond to the power required to 

magnetize and demagnetize the material over its 

hysteresis loop.

- Empirical formula:

𝑃𝐻 = 𝐾𝐻 𝑙 𝑆 𝑓 𝐵𝑚𝑎𝑥
𝑛

- KH is a material-related constant

- n is the Steinmetz coefficient (around 1.8)

- l is the mean field line, f the frequency, Bmax the maximum induction field



Electrical Engineering

III - Transformers

Magnetic circuits

- Defects of the iron-core coil: Eddy currents

- Currents induced in the magnetic material in which 

they flow freely

- Empirical formula:

- KFC is a material-related constant

- d is the thickness of the foil in the case of a laminated material

- l is the mean field line, f the frequency, Bmax the maximum induction field

- These currents cause losses in the form of power 

dissipated by Joule effect

𝑃𝐻 = 𝐾𝐹𝐶 𝑙 𝑆 𝑓2 𝐵𝑚𝑎𝑥
2

- Defects of the iron-core coil: IRON LOSSES PF 𝑷𝑭 = 𝑷𝑯 + 𝑷𝑭𝑪



Electrical Engineering

III - Transformers

Magnetic circuits

- Defects of the iron-core coil: Leak inductance

- Magnetic materials are never perfect, and never channel all the field lines

=> Part of the magnetic flux propagates in the air via less reluctant paths 

=> This corresponds to magnetic leaks (flux outside the magnetic circuit)

        

    
  

 
   

  
 
   

𝜑𝑚(𝑡)

- The magnetic field channeled in the magnetic circuit is called 

“magnetizing  flux”

𝜙 = 𝜙𝑚 + 𝜙𝑓

𝑣 𝑡 = −𝑁
𝑑𝜙

𝑑𝑡
= −(𝐿𝑚

𝑑𝑖

𝑑𝑡
+ 𝐿𝑓

𝑑𝑖

𝑑𝑡
)

- Lm is the magnetizing inductance, Lf is the leak inductance



Electrical Engineering

III - Transformers

Magnetic circuits

- Linear model of the iron-core coil:

    

    

  
 
     

 
   

  
   

 

 

     

  
 

- R is the resistance of the coil N turns

- LF is the leak inductance, LM is the magnetizing inductance

- RF is the resistor modelling the iron losses



Electrical Engineering

III - Transformers

Single-phase transformer

- The transformer enables a change in the RMS value of an AC voltage to be achieved with high 

efficiency => step-up transformer or step-down transformer

- A single-phase transformer consists of two windings wound on the same magnetic circuit

=> Usually, the two windings have different numbers of turns

 

U1 U2

n1 n2

I1 I2

PRIMARY SIDE SECONDARY SIDE



Electrical Engineering

III - Transformers

Single-phase transformer

- Functional approach: More precisely, The transformer is a static machine that allows sinusoidal 

quantities (voltages, currents) to be modified without changing their frequency.

=> Voltage adaptation: step-down or step-up transformer

=> Galvanic insulation: insulation transformer

Transform  an 

AC voltage

Transformer

AC High voltage

AC low voltage

Losses



Electrical Engineering

III - Transformers

Single-phase transformer

- Power grid base structure:

National 
grid

Regional 
grid

Departmental 
grid

HTA 
distribution grid

BT distribution 
grid

Delivery 
400 V

Delivery 
20 kV



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle:

- Hopkinson’s relation in the case of a single 

winding at the primary side:

𝒏𝟏. 𝒊𝟏 = 𝓡. 𝚽

- For two windings and i2 =0 (no load)

𝒆𝟏 = −𝒗𝟏 = −𝒏𝟏

𝒅𝝋

𝒅𝒕

𝒗𝟏 = 𝒏𝟏

𝒅𝝋

𝒅𝒕

𝒆𝟐 = −𝒏𝟐

𝒅𝝋

𝒅𝒕
= 𝒗𝟐



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle:

- For two windings and i2 ≠ 0 (presence of a load)

𝒏𝟏. 𝒊𝟏 + 𝒏𝟐. 𝒊𝟐 = 𝓡𝛟

𝒆𝟏 = −𝒗𝟏 = −𝒏𝟏

𝒅𝝋

𝒅𝒕

𝒗𝟏 = 𝒏𝟏

𝒅𝝋

𝒅𝒕

𝒆𝟐 = −𝒏𝟐

𝒅𝝋

𝒅𝒕
= 𝒗𝟐



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: receptor convention/generator convention

- Seen from the primary grid, the transformer is 

a receptor

=> Receptor convention at the primary side

- Seen from the load, the transformer is a 

generator

=> Generator convention at the secondary side



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: homonymous terminals

- The winding direction is marked with dots (●). Terminals marked in this way are called “homonymous 

terminals”. They correspond to points of the same instantaneous polarity.

- Sign conventions for magnetic and electrical quantities:

=> A positive current entering through a homonymous terminal creates a positive flux in the magnetic 

circuit

=> According to Hopkinson's law, the magnetomotive force is preceded by the sign + if the current 

orientation arrow enters through a homologous terminal, and by the sign - otherwise.



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: the ideal transformer - voltages

𝑣1 = −𝑒1 = 𝑛1

𝑑𝜑

𝑑𝑡

𝑣2 = 𝑒2 = −𝑛2

𝑑𝜑

𝑑𝑡

- Ideal windings = no voltage drop, no losses

- Ideal magnetic circuit = zero reluctance

- The transformation ratio is given by:

𝒎 =
𝒏𝟐

𝒏𝟏
= −

𝒗𝟐

𝒗𝟏

m > 1: Step-up transformer

m < 1: Step-down transformer



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: the ideal transformer - currents

- Ideal windings = no voltage drop, no losses - Ideal magnetic circuit = zero reluctance

- Hopkinson’s relation:

𝑛1. 𝑖1 + 𝑛2. 𝑖2 = ℛ𝜙

𝑛1. 𝑖1 + 𝑛2. 𝑖2 = 𝓡𝝓 = 𝟎

𝒊𝟐

𝒊𝟏
= −

𝒏𝟏

𝒏𝟐

𝒊𝟐

𝒊𝟏
= −

𝟏

𝒎
𝒊𝟏 = −𝒎. 𝒊𝟐



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: the ideal transformer - symbol

𝑚 =
𝑛2

𝑛1
=

𝑉2

𝑉1
=

𝐼1

𝐼2

𝜂 =
𝑃2

𝑃1
=

𝑉2. 𝐼2

𝑉1. 𝐼1
= 1

- Conservation of power, for the ideal transformer only



Electrical Engineering

III - Transformers

Single-phase transformer

- Principle: winding imperfection

- Joule losses (or copper losses)

  
 

  
 

  
   

   
 

  
 

  
 

  
 

   
 

  
 

  
 

  
 

  
 

 

   
 

𝑃𝐽 = 𝑟1. 𝐼1
2 + 𝑟2. 𝐼2

2

𝑅 = 𝜌.
𝓁

𝑠
 𝜌Θ = 𝜌0 1 + 𝑎Θ

Copper (Cu) : 0 = 1,6.10-8 .m, a = 0,39
Aluminum (Al) : 0 = 2,42.10-8 .m, a = 0,43

𝑣1 = −𝑒1
′ + 𝑟1. 𝑖1

𝑣2 = 𝑒2
′ − 𝑟2. 𝑖2

- Magnetic leaks

𝜙𝑇 = 𝜙𝑓1 + 𝜙𝑓2 + 𝜙

𝑒1
′ = 𝑛1.

𝑑𝜑

𝑑𝑡
+ 𝑛1.

𝑑𝜑𝑓1

𝑑𝑡

𝑒1
′ = 𝑒1 + 𝑙1.

𝑑𝑖1

𝑑𝑡
 

𝑒2
′ = 𝑒2 + 𝑙2.

𝑑𝑖2

𝑑𝑡
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III - Transformers

Single-phase transformer

- Principle: magnetic circuit imperfection

  
 

  
   

 

  
 

  
 

  
 

   
 

  
  

  
  

 
 

  
  

 
 

  
 

  
 

 

- Finite permeability and non zero reluctance of the magnetic circuit

=> A primary current is consumed at no load

ℛϕ = 𝑛1. 𝑖10
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III - Transformers

Single-phase transformer

- Equivalent model of the real transformer

  
 

  
 

   
 

  
 

  
 
   

 

  
  

 
 

  
  

   
 
      

 

  
  

 
 

  
 

  
 
 

    
 

   
 

  
 

  
 
    

 
   

  
 

  
 

  
 

  
 
    

 
     

 
   

 

  
 

  
 

 



Electrical Engineering

III - Transformers

Single-phase transformer

- Equivalent model of the real transformer: Impedance transfer

  
 

  
 

  
 

  
 

  
 

  
 

 

  
 

  
 

  
 

  
 
     

 
   

 

- We remind: 𝐼1 = 𝑚. 𝐼2 et 𝑉1 =
𝑉2

𝑚

- We write: 𝑍2 =
𝑉2

𝐼2
et 𝑍1 =

𝑉1

𝐼1

𝑍1 =
𝑉1

𝐼1
=

ൗ𝑉2
𝑚

𝑚. 𝐼2
=

1

𝑚2 .
𝑉2

𝐼2
=

𝑍2

𝑚2

𝑍1 =
𝑍2

𝑚2

- A transformer, in which an impedance Z2 is connected to the secondary side is equivalent to an 

impedance Z1 connected to the primary side with:

𝒁𝟏 =
𝒁𝟐

𝒎𝟐



Electrical Engineering

III - Transformers

Single-phase transformer

- Equivalent model of the real transformer: Kapp’s assumption

- The voltage drop across R1 and L1 is small compared to the voltages e1 and V1

=> R1/L1 and RF/Lp can be swapped



Electrical Engineering

III - Transformers

Single-phase transformer

- Equivalent model of the real transformer: Kapp’s assumption

- Kapp's equivalent secondary model (R1 and L1 are transferred to the secondary side)

𝑟𝑆 = 𝑟2 + 𝑚2. 𝑟1

 𝑙𝑆 = 𝑙2 + 𝑚2. 𝑙1

 𝑚 =
𝑛2

𝑛1
=

𝑉20

𝑉1
≅

𝐼1

𝐼2

𝑽𝟐 = −𝒎. 𝑽𝟏 + 𝑹𝐬. 𝑰𝟐 + 𝐣𝑿𝒔. 𝑰𝟐



Electrical Engineering

III - Transformers

Single-phase transformer

- Equivalent model of the real transformer: Kapp’s assumption

- Kapp's equivalent primary model (R2 and L2 are transferred to the primary side)

  
 

       
 

  
 

  
 
   

 

    
 
   

 

𝑅P = 𝑅1 +
𝑅2

𝑚2 : total winding resistance transferred to the primary side

𝑋P = 𝑋1 +
𝑋2

𝑚2 : total winding reactance transferred to the primary side

𝑍p = 𝑅p + j𝑋𝑝 : total winding impedance transferred to the primary side

𝑍

𝑚2 : secondary side load transferred to the primary side.

𝑽𝟏 =
𝒁

𝒎𝟐 . 𝑰𝟏 + 𝒁𝐏. 𝑰𝟏

(this model will be useful for the induction motor)
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III - Transformers

Single-phase transformer

- Determining the elements of the Kapp secondary equivalent model:

- Test at no load:

- conditions: Transformer supplied at rated voltage (V1N)  + open secondary side (I2 = 0)

- Measured quantities: V1N, I10, V20, P10 (iron losses) and Q10

𝑹𝑭 =
𝑽𝟏𝑵

𝟐

𝑷𝟏𝟎
 𝑿𝑷 = 𝑳𝑷. 𝝎 =

𝑽𝟏𝑵
𝟐

𝑸𝟏𝟎
   with  𝑄10 = (𝑉1𝑁. 𝐼10)2−𝑃10

2  𝒎 = 𝑽𝟐𝟎
𝑽𝟏



Electrical Engineering

III - Transformers

Single-phase transformer

- Determining the elements of the Kapp secondary equivalent model:

- Short-circuit test: (short circuit at the secondary side)

- conditions: Transformer supplied at reduced voltage (V1CC)  + rated secondary side current (I2CC = I2N)

- Measured quantities: V1CC, I1CC, I2CC, P1CC (Joule losses) and Q1CC

𝑹𝑺 =
𝑷𝟏𝑪𝑪

𝑰𝟐𝑪𝑪
𝟐  𝑿𝑺 = 𝑳𝑺. 𝝎 =

𝑸𝟏𝑪𝑪

𝑰𝟐𝑪𝑪
𝟐    with  𝑄1𝐶𝐶 = (𝑉1𝐶𝐶 . 𝐼1𝐶𝐶)2−𝑃1𝐶𝐶

2



Electrical Engineering

III - Transformers

Single-phase transformer

- Voltage drop at the secondary side of the transformer:

- Kapp’s triangle: case of the inductive load (2 > 0)

𝑉20 = 𝑚. 𝑉1 = 𝑅𝑆 + 𝑗𝑋𝑆 . 𝐼2 + 𝑉2

Δ𝑉2 ≈ 𝑅𝑆. 𝐼2 cos 𝜑2 + 𝑋𝑆. 𝐼2. sin 𝜑2



Electrical Engineering

III - Transformers

Single-phase transformer

- Efficiency:

- PF is obtained from the test at no load (P10)

𝜼 =
𝑽𝟐. 𝑰𝟐. 𝐜𝐨𝐬 𝝋𝟐

𝑽𝟐. 𝑰𝟐. 𝒄𝒐𝒔 𝝋𝟐 + 𝑹𝑺. 𝑰𝟐
𝟐 + 𝑷𝑭

- Optimum current obtained from 𝜂 =
𝑉2. cos 𝜑2

𝑉2. cos 𝜑2 + 𝑅𝑆. 𝐼2 +
𝑃𝐹𝑒𝑟

𝐼2

- The maximum efficiency  is given for 𝑅𝑆. 𝐼2𝑂𝑝𝑡 =
𝑃𝐹𝑒𝑟

𝐼2𝑂𝑝𝑡
  and  𝐼2𝑂𝑝𝑡 =

𝑃𝐹𝑒𝑟

𝑅𝑆



Electrical Engineering

III - Transformers

Three-phase transformer

- Construction and connection:

- At first glance, the three-phase transformer can be considered as the combination of 3 single-phase 

transformers

i1 i’1

v 1 v’1

Φ1
i2 i’2

v 2 v’2

Φ2 i3 i’3

v’3

Φ3

v 3

- Or it can be integrated on a single magnetic 

circuit comprising 3 columns, each carrying 

the primary winding and the secondary 

winding

i1

Nv1

i2

Nv2

i3

Nv3

i’1

N’v’1

Φ1 Φ2 Φ3

i’2

N’v’2

i’3

N’v’3
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III - Transformers

Three-phase transformer

- Construction and connection:

- Both the primary and the secondary sides of the transformer need to be connected (delta or Y)

- The nature of these couplings is designated by letters, using upper case letters for the high 
voltage side and lower case letters for the secondary side

1st letter (upper case): connection on H.T. side

- Y: « star »

- D or : delta

2nd letter (lower case): coupling on B.T. side

- y: star

- d: delta

Add letter “ N ou n” if neutral is out.



Electrical Engineering

III - Transformers

Three-phase transformer

- Hourly index: Phase shift angle between primary and secondary voltages expressed in hours

- Marked from 0 to 11, each hour angle is always a multiple of 30°:
=> 0 for 0
=> 1 for 30
=> 2 for 60°, and
=> 6 for 180
=> ...

- That's why a specific representation has been chosen:
=> On the same Fresnel diagram, we plot two vectors representing two homologous voltages, one on 
the primary side, the other on the secondary side.

=> The voltage on the primary side is shown vertically, pointing upwards.

If we consider these two vectors as the two hands of a watch, the time indicated by the watch is by 
definition the transformer hourly index

w

v1

v3 v2

w’

v’1



Electrical Engineering

III - Transformers

Three-phase transformer

- Example of Dyn 11 connection:

A

BC

a

b

c

a b c

B CA

- High-voltage side => delta coupling.
- Low-voltage side => Y connection with neutral out.
- 330° phase shift (11x30) between primary and secondary.



Electrical Engineering

III - Transformers

Three-phase transformer

- Transformer name plate: gives all the rating



Electrical Engineering

III - Transformers

- Equivalent model of the real transformer:

- Each transformer column can be modeled separately by a single-phase equivalent diagram at the 

secondary (see before)

Three-phase transformer

- Each element of the secondary model can be determined by the same tests as those of the single-

phase transformer

- Test at no load:

𝑹𝑭 =
𝟑𝑽𝑵

𝟐

𝑷𝟎
 𝑿𝑷 = 𝑳𝑷. 𝝎 =

𝟑𝑽𝑵
𝟐

𝑸𝟎
      with  𝑄0 = (𝑉𝑁. 𝐼0)2−𝑃0

2 𝒎 =
𝑽𝑵

′

𝑽𝑵

- Short-circuit test: (short circuit at the secondary side)

𝑹𝑺 =
𝑷𝑪𝑪

𝟑𝑰𝑪𝑪
′𝟐  𝑿𝑺 = 𝑳𝑺. 𝝎 =

𝑸𝑪𝑪

𝟑𝑰𝑪𝑪
′𝟐       with  𝑄𝐶𝐶 = (𝑉𝐶𝐶 . 𝐼𝐶𝐶)2−𝑃𝐶𝐶

2



Electrical Engineering

III - Transformers

Three-phase transformer

- HTA/BT distribution transformers: Dry transformer

- Active parts coated in protective resins (often 

epoxies) and mounted on a support frame in the 

open air.

- Good ventilation of the device and the room is 

required

- Dust removal from ambient air recommended



Electrical Engineering

III - Transformers

Three-phase transformer

- HTA/BT distribution transformers: Immersed transformer

- Sealed with Total/Integral filling

- Hermetically sealed transformer

- Accordion-folded walls to absorb changes in 

dielectric volume as it heats up

- Flexible tank

- Flexible tank



Electrical Engineering

III - Transformers

Three-phase transformer

- HTA/BT distribution transformers: Dry and Immersed transformers
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