
TD7 — MINIMISATION

Exi Après avoir rappelé la définition d'une congruence, donner la définition de la congruence de Nerode définie sur les états d'un automate fini déterministe complet.

Ex2 Calculer la congruence de Nerode de l'automate ci-dessous.

Ex3 Proposer un automate fini déterministe complet minimal qui reconnaît le langage des mots qui ne contiennent pas le facteur *bab*. Justifier sa minimalité.

Ex4 Rappeler le principe de fonctionnement de l'algorithme de Moore puis minimiser les automates ci-dessous à l'aide de cet algorithme, en utilisant la représentation en tableau vue en cours. Dessiner l'automate minimal.

	a	b
→ 1	3	2
2*	1	1
3*	2	4
4*	4	4

	a	b
\rightarrow 1	2	1
2	4	3
3	2	1
4*	3	4

	a	b
\rightarrow 1	3	8
2*	3 8	1
3	8	2
4*	5	6
5	6	2
6	7	8
7	6	4
8	5	8

- Ex5 Deux états d'un automate fini sont k-distinguables s'il existe un mot de longueur au plus k qui est accepté par un des états mais pas par l'autre. Deux états sont équivalents s'il ne sont pas distinguables.
 - (a) Montrer que les ensembles d'états équivalents sont les blocs de la congruence de Nerode.
 - **(b)** Montrer que l'algorithme de Moore sépare deux états k-distinguables au plus tard à la k^e étape.
 - (c) En déduire une plus petite borne *m* telle que si deux états d'un automate fini déterministe à *n* états ne sont pas équivalents, ils sont *m*-distinguables.