T5 – THE INDUCTION MACHINE

The aim of this tutorial is to study the induction machine using the equivalent model and the evolution of the mechanical torque-speed characteristic when the machine is supplied by a variable-frequency network.

The selected machine is an induction motor of brand "ABB" and type "M3AA 132 SMF 4", whose main information is as follows:

400V Y - 50Hz - 4 poles - 15kW

Study of the equivalent model of a machine stator winding

Equivalent model

The diagram shows the equivalent model of a machine stator winding.

 Remind the meaning of the quantities R_F, L_M.ω, R and L.ω.

No-load test

The machine was tested at no load. The results of this test are as follows:

 $U = 400V Y - f = 50Hz - I_0 = 14.70 A - P_0 = 420W.$

- 2) Remind the rotational speed during this test and calculate the slip, g.
- 3) **Show** that the active and reactive powers, absorbed by the motor during this test, are absorbed only in the resistance R_F and the magnetizing reactance $L_{M,\omega}$ respectivively.
- 4) **Calculate** the power factor, the resistance R_F and the magnetizing reactance $L_{M.O.}$

Blocked rotor test

The machine was tested with blocked rotor and reduced voltage. The results of this test were as follows:

U_{RB} = 73,9V Y(phase voltage) - f = 50Hz - I_{RB} = 29,70 A - P_{RB} = 1330W

- 5) **Remind** the rotational speed during this test and **calculate** the slip, g.
- 6) **Show** that the active and reactive powers, absorbed by the engine, are absorbed only in the resistance R /g and the reactance X = $L.\omega$.

The machine is wye-connected. Measurement of the hot resistance between two terminals (U1 and V1) gave **0.319 0** Ω .

7) **Calculate** the power factor, resistance R and reactance $X = L.\omega$.

Exploiting the tests

- 8) **Show** that the electromagnetic torque, noted C_E, can be written: $C_E = 3 \cdot \frac{p}{\omega} \cdot \frac{v^2 \cdot R}{\frac{R^2}{g} + g \cdot (L \cdot \omega)^2}$
- 9) **Show** that the electromagnetic torque has a maximum, noted C_{EMax}, for the value noted g_{MAX} of the slip in motor operation. **Define** and **calculate** g_{MAX} and C_{EMax}.
- 10) From the torque expression, calculate C_{DEM}, the motor starting torque.
- 11) Linearize the torque characteristic in the useful part (sliding much less than g_{MAX}). Then, express C_E as a function of V, p, ω , R and g.

Association with a converter

A frequency converter is conected between the power grid and the induction machine. It modulates the frequency f of the stator currents while keeping the V/f ratio constant. In this section, the slip remains low with respect to g_{MAX} .

12) **Justify** the action of such a converter on the motor rotating speed n.

13) Write the torque as $C_E(n) = \alpha . (\beta . f - n)$. It is reminded that the V/f ratio is constant.

14) For f = 50Hz, f = $\frac{3}{3}$.50Hz and f = $\frac{1}{3}$.50 Hz, **plot** the characteristics C_E(f;n) on the same graph.

The motor drives a machining system whose resistant torque is:

$$C_R = 0,04.n + 40$$

C_{RES} in N.m, n in rpm.

- 15) Calculate the coordinates of the operating points for each of the three frequencies.
- 16) **Decompose**, through a simple diagram, a frequency inverter and **represent** the shape of the characteristic voltages in the variator.