
CRYPTO 
chiffrement symétrique

Nicolas Ollinger 
M1 informatique — 2025/2026



Dans les épisodes précédents



Cryptographie à clé secrète

Un schéma de chiffrement à clé secrète est 
défini par un espace des messages et 3 
algorithmes :

ℳ espace des messages

Gen() = k algo probabiliste de génération de clé

Enc
k
(m) = c algo probabiliste de chiffrement

Dec
k
(c) = m algo déterministe de déchiffrement

∀k = Gen() ∀m ∈ ℳ Dec
k
(Enc

k
(m)) = m



Secret parfait (formel)

Le schéma de chiffrement (Gen, Enc, Dec) 
assure le secret parfait si quelque soit la 
distribution de probabilité sur l'espace des 
messages, quelque soit le message m et 
quelque soit le message chiffré c de probabilité 
non nulle, on a

P(M = m |C = c) = P(M = m)



Formulation « expérimentale »

Un adversaire A choisit deux messages m0 et 
m1 quelconques. 

L'un de ces deux messages est choisi 
uniformément et chiffré en c. 

A doit alors deviner si le message chiffré c 
correspond à m0 ou à m1. 

Un schéma est parfaitement indistinguable 
si A ne peut pas deviner la bonne réponse avec 
un probabilité supérieure à 1/2.



Équivalence et limitation

Un schéma de chiffrement assure le secret 
parfait si et seulement si il est parfaitement 
indistinguable. 

Théorème Si (Gen, Enc, Dec) assure le secret 
parfait alors l'espace des clés est au moins 
aussi grand que l'espace des messages.



Sécurité calculatoire

Remplacer le secret parfait par un secret relatif 
à la puissance de calcul de l’attaquant. 

Une méthode de chiffrement est sûre si le 
meilleur algorithme pour casser le chiffre 
nécessite un nombre d’opérations trop grand 
pour être utilisable en pratique.



Sécurité sémantique



Sécurité concrète

Un schéma est (t,𝜺)-sécurisé si un adversaire 
disposant d'un temps de calcul au plus t peut 
casser le chiffrement avec probabilité au plus 𝜺. 

Exemple Force brute en temps t pour un clé 
de taille n qui réussit avec probabilité au plus

ct/2n



Quelques grandeurs
Un processeur à 4GHz exécute 260 cycles en  

Le supercalculateur le plus puissant en juin 
2018 développe 122,3 PetaFLOPS. Il exécute 
260 instructions en virgule flottante en 

Pour une attaque force brute sur une clé de 
128 bits, il lui faut 268 fois plus de temps soit 
environ 6400 fois l'âge estimé de l'univers.

260/(4 × 109) s ≈ 9 ans

260/(122,3 × 1015) s ≈ 9,427 s



Sécurité asymptotique

Paramétrer les schémas cryptographiques, ainsi 
que les acteurs (alliés et adversaires) par un 
paramètre de sécurité n. 

Les schémas sont initalisés pour une valeur fixée 
de n (la longueur de la clé). 

On demande aux algorithmes efficaces de 
s'exécuter en temps polynomial en n. 

On définit une probabilité négligeable de 
succès comme une probabilité asymptotiquement 
plus petite que tout inverse d'un polynôme en n.



Algorithmes PPT

Un algorithme probabiliste A est un algorithme 
qui peut effectuer des choix aléatoires 
(lancers de pièces deux à deux indépendants) 
pendant son exécution. 

Un algorithme PPT est un algorithme 
probabiliste qui s'exécute en temps 
polynomial en la taille de l'entrée. 

On considèrera que les algorithmes efficaces 
sont ceux qui s'exécutent en temps polynomial.



Sécurité asymptotique

Un schéma est sécurisé si tout adversaire PPT 
qui réussit à casser le chiffrement le fait avec 
une probabilité négligeable. 

Le paramètre de sécurité permet d'ajuster le 
niveau de sécurité (la probabilité de succès de 
l'adversaire décroît exponentiellement vite).



Quelques grandeurs

Exemple  Imaginons un schéma qui s'exécute 
en 106×n2 cycles et qu'un adversaire casse en 
108×n4 cycles avec probabilité au plus 2-n/2. 

Exercice  Calculer les temps de calcul et la 
probabilité de réussite dans les deux cas 
suivants : 

• 2 GHz CPU, n=80 
• 8 GHz CPU, n=120 

Augmenter la valeur de n jusqu'à obtenir le 
niveau de sécurité concrète souhaité.



Cryptographie à clé secrète

Un schéma de chiffrement à clé secrète est 
défini par  3 algorithmes :

Gen(1n) = k algo probabiliste de génération de clé

Enc
k
(m) = c algo probabiliste de chiffrement

Dec
k
(c) = m algo déterministe de déchiffrement

∀k = Gen(1n) ∀m ∈ ℳ Dec
k
(Enc

k
(m)) = m

∀n, ∀k = Gen(1n) |k | ⩾ n



Expérience d'indistinguabilité

Un adversaire A reçoit 1n et calcule deux 
messages m0 et m1 de même longueur. 

L'un de ces messages est choisi uniformément 
et chiffré en c par une clé k=Gen(1n). 

A doit alors deviner si le message chiffré c 
correspond à m0 ou à m1. 

Un schéma est indistinguable en présence 
d'une oreille indiscrète si tous les adversaires 
A PPT devinent la bonne réponse avec une 
probabilité au plus 1/2 + fonction négligeable.



Sécurité sémantique

La notion de sécurité sémantique est 
équivalente à l'indistinguabilité en présence 
d'une oreille indiscrète. 

Remarque  On ne demande pas au schéma de 
chiffrement de cacher la taille du message 
chiffré. Ce peut être un problématique pour 
certaines applications.



Chiffrement par flot



Chiffrement par flot

S’inspire du masque jetable. 

Idée : remplacer la source aléatoire du masque 
par un générateur de nombres pseudo-
aléatoires bien choisi. La racine devient la clé.



Formellement

Un algo de chiffrement par flot est décrit par 
deux algorithmes déterministes : 

Init(s,IV), avec s la racine et IV un vecteur 
d'initialisation, calcule l'état initial st0 ; 

GetBits(sti) calcule un (ou plusieurs) bits y 
ainsi que l'état sti+1 mis à jour du système.



Mise en œuvre

Générer n bits : 

Entrée : s, IV, n 

Sortie : y1, ..., yn 

st = Init(s,IV) 

for i = 1 to n: 

  (yi, st) = GetBits(st) 

return y1, ..., yn



Mode synchronisé
Les deux interlocuteurs mémorisent l'état du 
système pour ne pas réutiliser les portions du 
masque déjà utilisées.

Adapté à un échange connecté, typiquement une 
unique session de communication.

def start(k): 

st = Init(k)

def send(m): 

for i = 1 to |m|: 

  (yi, st) = GetBits(st) 

  ci = mi ⊕ yi 

return c

def recv(c): 

for i = 1 to |c|: 

  (yi, st) = GetBits(st) 

  mi = ci ⊕ yi 

return m



Mode désynchronisé

Utiliser le vecteur d'initialisation pour éviter de 
réutiliser deux fois une même séquence.

def send(s,m): 

IV = GenIV() 

st = Init(s,IV) 

for i = 1 to |m|: 

  (yi, st) = GetBits(st) 

  ci = mi ⊕ yi 

return IV·c

def recv(s,IV·c): 

st = Init(s,IV) 

for i = 1 to |m|: 

  (yi, st) = GetBits(st) 

  mi = ci ⊕ yi 

return m

Sans état.



Qualité d'un chiffrement par flot

La sécurité sémantique est garantie si le 
générateur est pseudo-aléatoire... de qualité 
cryptographique : 

• les suites de bits engendrées passent tous 
les tests statistiques PPT ; 

• si un attaquant connait tout ou partie de la 
suite de bits générés par GetBits, il est 
difficile de retrouver la clé k utilisée (ou la 
paire s, IV).



LFSR : registres à décalage linéaires

Une méthode historique pour générer des 
nombres pseudo-aléatoires, devenue une 
brique de construction du chiffrement par flot.



Ajouter de la non linéarité

• en utilisant des opérateurs non linéaires ; 

• en combinant plusieurs générateurs linéaires 
dont on contrôle les horloges ; 

• etc



Trivium (eSTREAM 2008)

3 FSR couplés (de 93, 84, 
111 bits) 

état = 288 bits 

IV : 80 bits 
s  : 80 bits 

init : remplissage  
+ 4×288 itérations.



RC4

Les FSR sont compacts et rapides sous forme 
matérielle mais pas très efficace en logiciel. 

RC4 inventé en 1987 par Ron Rivest. 

A résisté de nombreuses années, attention cet 
algorithme ne doit plus être utilisé. 

Lui préférer Salsa20 ou encore Chacha20.



RC4 Init
Entrée : une clé k de 16 à 256 octets 

Sortie : l'état initial (S,i,j) 

for i = 0 to 255: 

  S[i] = i 

n = longueur(k) 

j = 0 

for i = 0 to 255: 

  j = (j + S[i] + k[i%n])%256 

  échanger(S[i],S[j]) 

i = 0 

j = 0 

return (S,i,j)



RC4 GetBits

Entrée : l'état courant (S,i,j) 

Sortie : un octet y et l'état mis à jour (S,i,j) 

i = (i + 1)%256 

j = (j + S[i])%256 

échanger(S[i],S[j]) 

t = (S[i] + S[j])%256 

y = S[t] 

return (S,i,j), y



RC4 IV

L'algorithme n'a pas été conçu pour combiner 
un vecteur d'initialisation à la clé k. 

Certains protocoles concaténent dans RC4 l'IV 
en tête de la clef. 

Cette modification rend RC4 vulnérable à des 
reconstructions de la clé k à partir d'un grand 
nombre d'échanges désynchronisés.



Chiffrement par blocs



Principes de Shannon

Claude Shannon (1916-2001) 

Communication Theory of 
Secrecy Systems, Bell System 
Technical Journal, vol. 28(4), page 
656–715, 1949. 

Diffusion : mélanger l'information 
du message en clair dans le 
message chiffré. 

Confusion : utiliser la clef pour 
camoufler le message en clair. 

Effet d'avalanche : modifier un 
bit en entrée peut modifier tous les 
bits de la sortie.

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf


Permutations pseudo-aléatoires

Plutôt que de chiffrer des messages de taille 
arbitraire, on se concentre sur des blocs de 
taille fixe. 

Chaque clé possible doit générer une 
permutation proche de l'aléatoire.



Chiffrement par blocs

K � {0,1}m clé
M � {0,1}n message

EK : {0,1}n � {0,1}n

DK : {0,1}n � {0,1}n

C = EK(M) message chiffré
M = DK(C) message déchiffré



DES

Développé par IBM, adopté en 1977 par le NBS 
(National Bureau of Standards), le futur NIST. 

DES n'est plus considéré comme sécurisé 
car ses clés de 56 bits sont trop courtes. 

Au-delà de l'intérêt historique, il n'existe pas 
d'autre attaque connue que la force brute.



Chiffrement de Feistel

Idée

I E↵ectuer successivement plusieurs chi↵rements simples

I La composition de chi↵rements permet d’approcher une

permutation quelconque

I 1973 : Feistel propose une structure générique pour les

chi↵rements par blocs



Chiffrement de Feistel
Input : un bloc en clair M de 2n bits et une clé K

M est scindé en deux messages L[0] et R[0] de longueurs n

L’algorithme se déroule en p étapes de mêmes structures

R[i]

f�

L[i]

L[i-1] R[i-1]

K[i]

Le Chi↵rement final : L[p].R[p]



Déchiffrement avec Feistel

Application des clés de K [p] à K [0]

Inversion des blocs en entrée de chaque tour

Chi↵rement Déchi↵rement

R[i]

f�

L[i]

L[i-1] R[i-1]

K[i]

L[i]

f� K[i]

R[i-1] L[i-1]

R[i]



DES : principe

Chi↵rement par blocs de 64 bits

Clé de 56 bits (64 mais uniquement 56 sont utilisés)

INPUT

I Un bloc M de 64 bits

I Une clé K de 56 bits



DES : algorithme
L’algorithme Focus sur le calcul

Permutation �1 du bloc 64 bits

f

f

f

L[0] R[0]

R[16]L[16]

�

R[15]L[15]

�

R[1]L[1]

�

Permutation d’un bloc 64 bits

K[0]

K[1]

K[15]

�S E�

R[i]L[i](32 bits) (32 bits)
K[i] (48 bits)

(48 bits)

L[i+1] R[i+1]



DES : calcul des clés

Partie droite

28 bits 28 bits

28 bits28 bits

Décalage à gauche

Partie gauche Partie droite

Permutation CP-2

clé finale (48 bits)

clé initiale (64 bits)

Permutation CP-1

56 bits

56 bits

48 bits

Partie gauche



DES : déchiffrement

DES est un chi↵rement symétrique à clé secrète

Comme pour l’algorithme de Feistel, il faut inverser l’application

des clés ainsi que les moitiés droites et gauches



DES double

EncryptionM C

K1 K2

DES

Encryption

DES

Nombre de choix possibles pour les clés : 256 ⇤ 256 = 2112

La sécurité du double DES 6= sécurité simple DES avec une clé de

112 bits

Exercice

Sachant que nous avons M et C : trouvez une technique

permettant de trouver K1 et K2 en explorant uniquement 257 clés



DES triple

DecryptionM

K1

C

K1K2

DES

Encryption

DES

Encryption

DES

Intérets

I Un DES triple peut déchi↵rer un message crypté en DES

simple

I Puissance de calculs innaccessible actuellement




