| F<TI>E

chiffrement symetriqgue

Nicolas Ollinger
M1 informatique — 2025/2026

Dans les épisodes préecedents

Cryptographie a clé secrete

Un schéma de chiffrement a clé secrete est
défini par un espace des messages et 3
algorithmes :

A espace des messages
Gen() = k algo probabiliste de genération de clé
Enc,(m) = ¢ algo probabiliste de chiffrement

Dec,(c) =m algo déeterministe de dechiffrement

Vk=Gen() Vme 4 Dec(Enc(m)) =m

Secret parfait (formel)

Le schéma de chiffrement (Gen, Enc, Dec)
assure le secret parfait si quelque soit |la
distribution de probabilité sur |'espace des
messages, quelque soit le message m et
quelque soit le message chiffré c de probabilite
non nulle, on a

PM=m|C=c)=PM=m)

Formulation « expérimentale »

Un adversaire A choisit deux messages mgo et
M1 quelconques.

L'un de ces deux messages est choisi
uniformément et chiffré en c.

A doit alors deviner si le message chiffré c
correspond a mop ou a ms.

Un schéma est parfaitement indistinguable

si A ne peut pas deviner la bonne réponse avec
un probabilité supérieure a 1/2.

Equivalence et limitation

Un schéma de chiffrement assure le secret
parfait si et seulement si il est parfaitement
indistinguable.

Théoreme Si (Gen, Enc, Dec) assure le secret
parfait alors I'espace des clés est au moins
aussi grand que l'espace des messages.

Sécuritée calculatoire

Remplacer le secret parfait par un secret relatif
a la puissance de calcul de I'attaquant.

Une méthode de chiffrement est sire si le
meilleur algorithme pour casser le chiffre
necessite un nombre d’opéerations trop grand
pour étre utilisable en pratique.

Securité semantique

Sécurité concrete

Un schéma est (t,¢)-sécuriseé si un adversaire

disposant d'un temps de calcul au plus t peut
casser le chiffrement avec probabilité au plus e.

Exemple Force brute en temps t pour un clé
de taille n qui réussit avec probabilitée au plus

ct/2"

Quelques grandeurs

Un processeur a 4GHz exécute 260 cycles en

20/(4 % 10°) s ~ 9 ans

Le supercalculateur le plus puissant en juin
2018 développe 122,3 PetaFLOPS. Il exécute
260 instructions en virgule flottante en

200/(122,3 x 10'°) s ~ 9,427 s

Pour une attaque force brute sur une clé de
128 bits, il lui faut 268 fois plus de temps soit
environ 6400 fois I'age estimeé de |'univers.

Sécurité asymptotique

Paramétrer les schémas cryptographiques, ainsi
que les acteurs (alliés et adversaires) par un
parametre de sécurité n.

Les schémas sont initalisés pour une valeur fixee
de n (la longueur de la clé).

On demande aux algorithmes efficaces de
s'exeécuter en temps polynomial en n.

On définit une probabilité négligeable de
succes comme une probabilité asymptotiquement
plus petite que tout inverse d'un polyndme en n.

Algorithmes PPT

Un algorithme probabiliste A est un algorithme
qui peut effectuer des choix aléatoires
(lancers de pieces deux a deux indépendants)
pendant son exeécution.

Un algorithme PPT est un algorithme
probabiliste qui s'exécute en temps
polynomial en la taille de I'entrée.

On considerera que les algorithmes efficaces ((}
sont ceux qui s'executent en temps polynomial.

Sécurité asymptotique

Un schéma est sécuriseé si tout adversaire PPT
qui réussit a casser le chiffrement le fait avec
une probabilité négligeable.

Le parametre de sécurité permet d'ajuster le
niveau de securité (la probabilité de succes de
I'adversaire décroit exponentiellement vite).

Quelques grandeurs

Exemple Imaginons un schéma qui s'exécute
en 109xn2 cycles et qu'un adversaire casse en

108xn4 cycles avec probabilité au plus 2-7/2,

Exercice Calculer les temps de calcul et |a
probabilité de réussite dans les deux cas

suivants :
e 2 GHz CPU, n=80
e 8 GHz CPU, n=120

Augmenter la valeur de n jusqu'a obtenir le
niveau de sécurité concrete souhaite.

Cryptographie a clé secrete

Un schéma de chiffrement a clé secrete est
défini par 3 algorithmes :

Gen(1") = k algo probabiliste de géneration de clé
Enc,(m) = ¢ algo probabiliste de chiffrement
Dec,(c) = m algo déterministe de déchiffrement

Vk = Gen(1") Vme #l Dec,(Enc,(m)) =m
Vn,Vk = Gen(1") |k| > n

Expérience d'indistinguabilité

Un adversaire A recoit 1" et calcule deux
messages mo et mi1 de méme longueur.

L'un de ces messages est choisi uniformément
et chiffré en c par une clé k=Gen(1n).

A doit alors deviner si le message chiffré c
correspond a mop ou a mi.

Un schéma est indistinguable en présence
d'une oreille indiscrete si tous les adversaires
A PPT devinent la bonne réeponse avec une
probabilité au plus 1/2 + fonction négligeable.

Sécurité semantique

La notion de sécurité semantique est
équivalente a l'indistinguabilité en présence
d'une oreille indiscrete.

Remarque On ne demande pas au schéma de
chiffrement de cacher la taille du message
chiffre. Ce peut étre un problématique pour
certaines applications.

Chiffrement par flot

Chiffrement par flot

S’inspire du masque jetable.

Idée : remplacer la source aléatoire du masque
par un générateur de nombres pseudo-
aléatoires bien choisi. La racine devient la cle.

Formellement

Un algo de chiffrement par flot est décrit par
deux algorithmes déterministes :

Init(s,IV), avec s la racine et IV un vecteur
d'initialisation, calcule I'état initial sto ;

GetBits(sti) calcule un (ou plusieurs) bits y
ainsi que I'état sti. mis a jour du systeme.

Mise en ceuvre

Générer n bits :

Entrée : s, IV, n
Sortie : vy1, ..., ¥n

st = Init(s,IV)
for 1 =1 to n:

(yi, st) = GetBits(st)
return yi, ..., VYn

Mode synchronisé

Les deux interlocuteurs meémorisent I'état du
systeme pour ne pas réutiliser les portions du
masque déja utilisees.

def start(k):

st = Init(k)
def send(m): def recv(c):
for 1 =1 to |[m]|: for 1 =1 to |c]|:
(yi, st) = GetBits(st) (yi, st) = GetBits(st)
Ci = mi ® Vyj mi = Ci @ VYj
return cC return m

Adapte a un échange connecté, typiqguement une
unigue session de communication.

Mode désynchronisée

Utiliser le vecteur d'initialisation pour éviter de
reutiliser deux fois une méme séquence.

def send(s,m): def recv(s,IV-c):
IV = GenIV() st = Init(s,IV)
st = Init(s,IV) for 1 =1 to [m]|:
for i =1 to |m|: (yi, st) = GetBits(st)
(yi, st) = GetBits(st) mi = Ci ® i
Ci = mi ® yj return m

return 1IV-c

Sans état.

Qualité d'un chiffrement par flot

La sécurité sémantique est garantie si le
génerateur est pseudo-aleatoire... de qualité
cryptographique :

 les suites de bits engendrées passent tous
les tests statistiques PPT ;

e Si un attaquant connait tout ou partie de la
suite de bits générés par GetBits, il est
difficile de retrouver la clé k utilisée (ou la
paire s, IV).

LFSR : registres a decalage lineaires

Une meéthode historique pour généerer des
nombres pseudo-aleatoires, devenue une
brique de construction du chiffrement par flot.

Feedbac Qutput

S ﬂl 1|o 1‘o|o|o|1 1l1l1]o0lo]1]2

Ajouter de la non linéarite

« en utilisant des opéerateurs non linéaires ;

« en combinant plusieurs genérateurs lineaires
dont on controdle les horloges ;

e efc

Trivium (eSTREAM 2008)

—

5288 FBT®H S1

3 FSR couplés (de 93, 84,
111 bits)

PR

état = 288 bits "

IV : 80 bits
s : 80 bits

init : remplissage
+ 4x288 itérations.

8.162

095

RC4

Les FSR sont compacts et rapides sous forme
matérielle mais pas tres efficace en logiciel.

RC4 inventé en 1987 par Ron Rivest.

A résisté de nombreuses annees, attention cet
algorithme ne doit plus étre utiliseé.

Lui préférer Salsa20 ou encore Chacha?20.

RC4 Init

Entrée : une clé k de 16 a 256 octets
Sortie : 1'état initial (S,i, j)

for 1 = @ to 255:

S[i] =

n = longueur(k)

j =0

for 1 = 0 to 255:
j = (G + S[il + k[i%n1)%256
échanger(S[il,S[j1)

1 =0

j =0

return (S,1i,3j)

RC4 GetBits

Entrée : 1'état courant (S,i,j)
Sortie : un octet y et 1'état mis a jour (S,i,j)

i = (1 + 1)%256

J = (J + S:1:>%256

echanger(S'i: SCT)
= (S[i] + S[j1)%256

= S[t]

return (S,1i,3), v

RC4 IV

L'algorithme n'a pas été concu pour combiner
un vecteur d'initialisation a la clé k.

Certains protocoles concaténent dans RC4 I'lV
en téte de la clef.

Cette modification rend RC4 vulnérable a des
reconstructions de la clé k a partir d'un grand
nombre d'eéchanges désynchronisés.

Chiffrement par blocs

Principes de Shannon

Claude Shannon (1916-2001)

Communication Theory of
Secrecy Systems, Bell System
Technical Journal, vol. 28(4), page
656-715, 1949,

Diffusion : melanger l'information
du message en clair dans le
message chiffre.

Confusion : utiliser la clef pour
camoufler le message en clair.

Effet d'avalanche : modifier un
bit en entrée peut modifier tous les
bits de la sortie.

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

Permutations pseudo-aléatoires

Plutot que de chiffrer des messages de taille
arbitraire, on se concentre sur des blocs de

taille fixe.

Chaque clé possible doit génerer une
permutation proche de |'aléatoire.

Chiffrement par blocs
Ke{0,1}" clé
Me {0,1}" message

Ex:{0,1}" — {0,1})"
Dy : {0,1}" — {0,1}"

C = Ex(M) message chiffre
M = Dy (C) message dechiffré

DES

Développé par IBM, adopte en 1977 par le NBS
(National Bureau of Standards), le futur NIST.

DES n'est plus considéré comme sécuriseé
car ses clés de 56 bits sont trop courtes.

Au-dela de l'intérét historique, il n'existe pas
d'autre attaque connue que la force brute.

Chiffrement de Feistel

ldée
» Effectuer successivement plusieurs chiffrements simples

» |a composition de chiffrements permet d'approcher une
permutation quelconque

» 1973 : Feistel propose une structure générique pour les
chiffrements par blocs

Chiffrement de Feistel

Input : un bloc en clair M de 2n bits et une clé K
M est scindé en deux messages L[0] et R[0] de longueurs n

L'algorithme se déroule en p étapes de méeémes structures

L[i-1] || R[i-1]

S

N

— L[i] R[]

Le Chiffrement final : L[p].R|p]

Déechiffrement avec Feistel

Application des clés de K[p] a K]O]

Inversion des blocs en entrée de chaque tour

Chiffrement

L[i-1]

R[i-1]

|

D

Déchiffrement

o

KI]

RIiT | L]
ne
D

» LJi]

R

K]

N

R[i-1]

L[i-1]

DES : principe

Chiffrement par blocs de 64 bits
Clé de 56 bits (64 mais uniquement 56 sont utilisés)

INPUT

» Un bloc M de 64 bits
» Une clé K de 56 bits

DES : algorithme

L'algorithme

Permutation d'un bloc 64 bits

v
L[]

KIO]

v

R[0]

R[1]

LT15]

l

R[5

@

L[16]

R[16]

Permutation

—1 du bloc 64 bits

Focus sur le calcul

(32 bits)

i

v

R[i]
l K[i] (48 bits)
RO
‘ (48 blts) !
L[i+1] R[i+1]

(32 bits)

DES : calcul des clés

clé initiale (64 bits)

'

Permutation CP-1

Partie gauche

Partie gauche

CP-1

57

49

41

33

25

17

58

50

42

34

26

18

10

59

51

43

35

27

19

11

60

52

36

63

55

47

39

31

23

15

62

54

46

38

30

22

14

61

53

45

37

29

21

13

28

20

12

56 bits
Y 28 bits 28 bits y
Partie droite
| ! i |
Décalage a gauche
y 28 bits | | 28 bits y
Partie droite
| |
y 56 bits
Permutation CP-2
¢48 bits

clé finale (48 bits)

CP-2

14

17

11

24

28

15

21

10

23

19

12

268

16

27

20

13

41

52

31

37

47

55

30

40

51

45

33

48

49

39

56

34

53

46

42

50

36

29

32

DES : dechiffrement

DES est un chiffrement symétrique a clé secrete

Comme pour |'algorithme de Feistel, il faut inverser |"application
des clés ainsi que les moitiés droites et gauches

DES double

DES DES
Encryption

Encryption

| |

K1 K2

Nombre de choix possibles pour les clés : 2°0 x 2°6 — 2112

La sécurité du double DES # sécurité simple DES avec une clé de
112 bits

Exercice
Sachant que nous avons M et C : trouvez une technique
permettant de trouver K; et K> en explorant uniquement 2°7 clés

DES triple

DES DES DES
Encryption

| | |

K1 Ks K1

Decryption Encryption

Intérets

» Un DES triple peut déchiffrer un message crypté en DES
simple

» Puissance de calculs innaccessible actuellement

A Stick Figure Guide to the

Advanced Encryption Standard
(AES)

v

© Copyright 2009, Jeff Moser
http://www.moserware.com/

