
CRYPTO
chiffrement symétrique (suite et fin)

Nicolas Ollinger
M1 informatique — 2025/2026

Chiffrement par blocs

Chiffrement par blocs

K � {0,1}m clé
M � {0,1}n message

EK : {0,1}n � {0,1}n

DK : {0,1}n � {0,1}n

C = EK(M) message chiffré
M = DK(C) message déchiffré

AES illustré avec Mini-AES

AES

Algorithme Rijndael, vainqueur en 2000 de
l’appel d’offre du NIST pour remplacer DES.

Blocs de 128 bits

Clés de 128, 192 ou 256 bits

10, 12 ou 14 rondes composant 4 opérations
élémentaires (ByteSub, ShiftRow, MixColumn
et KeyAddition)

MiniAES
Version pédagogique très simplifiée d’AES.

Mots et clé de 16 bits vus comme 4 nibbles.

2 rondes.

 p0 p1 p2 p3

Bit

0

Bit

1

Bit

2

Bit

3

Bit

4

Bit

5

Bit

6

Bit

7

Bit

8

Bit

9

Bit

10

Bit

11

Bit

12

Bit

13

Bit

14

Bit

15

P =

p0 p2

p1 p3

Le corps de Galois GF(24)
• Corps fini composé de tous les nibbles (0000,

0001, 0010, …, 1100, 1101, 1110, 1111) vu
comme des polynômes à coefficients binaires

• Addition ⊕ : c’est le XOR !

• Multiplication ⊗ : modulo x4+x+1

(x3 + x + 1) ⊕ (x2 + x + 1) = x
3 + x

2

x
3 + x + 1

(x3 + x + 1) ⊗ (x2 + x + 1) = x
5 + x

4 + 1 (mod x
4 + x + 1)

= x
2

NibbleSub ɣ

Figure 3: The NibbleSub Operation

NibbleSub

a0 a2

a1 a3

b0 b2

b1 b3

Input Output Input Output

0000 1110 1000 0011

0001 0100 1001 1010

0010 1101 1010 0110

0011 0001 1011 1100

0100 0010 1100 0101

0101 1111 1101 1001

0110 1011 1110 0000

0111 1000

1111 0111

ShiftRow π

ShiftRow

b0 b2

b1 b3

b0 b2

b3 b1
=

c0 c2

c1 c3

MixColumn θ

MixColumn

c0 c2

c1 c3

d0 d2

d1 d3

d0

d1

c0

c1
3 2

2 3
=

d2

d3

c2

c3

3 2

2 3
=andhere

Calculs dans GF(24)

KeyAddition σKi

d0 d2

d1 d3

k0 k2

k1 k3

e0 e2

e1 e3
⊕ =

Calcul des clés de rondes

K0

w0 = k0

w1 = k1

w2 = k2

w3 = k3

K1

w4 = w0 ⊕ NibbleSub(w3) ⊕ 1

w5 = w1 ⊕ w4

w6 = w2 ⊕ w5

w7 = w3 ⊕ w6

K2

w8 = w4 ⊕ NibbleSub(w7) ⊕ x

w9 = w5 ⊕ w8

w10 = w6 ⊕ w9

w11 = w7 ⊕ w10

Chiffrement

Enc = (σ
K2

∘ π ∘ γ) ∘ (σ
K1

∘ θ ∘ π ∘ γ) ∘ σ
K0

 S

 S Plaintext

Ciphertext

NibbleSub ShiftRow MixColumn KeyAddition

Déchiffrement
Dec = ((σ

K2
∘ π ∘ γ) ∘ (σ

K1
∘ θ ∘ π ∘ γ) ∘ σ

K0)
−1

= σ−1
K0

∘ (σ
K1

∘ θ ∘ π ∘ γ)
−1

∘ (σ
K2

∘ π ∘ γ)
−1

= σ−1
K0

∘ (γ−1 ∘ π−1 ∘ θ−1 ∘ σ−1
K1) ∘ (γ−1 ∘ π−1 ∘ σ−1

K2)
= σ

K0
∘ (γ−1 ∘ π ∘ θ ∘ σ

K1) ∘ (γ−1 ∘ π ∘ σ
K2)

Input Output Input Output

0000 1110 1000 0111

0001 0011 1001 1101

0010 0100 1010 1001

0011 1000 1011 0110

0100 0001 1100 1011

0101 1100 1101 0010

0110 1010 1110 0000

0111 1111

1111 0101

Modes opératoires

Modes opératoires

Pour le chiffrement par flot, pour chiffrer un
message de longueur n, il suffit générer n bits
de flot et d’en faire le XOR avec le message.

Et dans le cas du chiffrement par blocs ?

Rq Même problématique pour le chiffrement
par flot avec un séquence de messages.

NIST Special Publication 800-38A Recommendation for Block
2001 Edition Cipher Modes of Operation

Methods and Techniques

Morris Dworkin

C O M P U T E R S E C U R I T Y

http://dx.doi.org/10.6028/NIST.SP.800-38A

ECB (electronic codebook)

ECB Encryption ECB Decryption

PLAINTEXT

CIPHK

INPUT BLOCK

OUTPUT BLOCK

CIPHERTEXT

CIPH-1
K

INPUT BLOCK

OUTPUT BLOCK

CIPHERTEXT PLAINTEXT

Fuite d'information : deux blocs identiques
sont toujours chiffrés à l'identique !

Padding

Pour les modes de chiffrement qui fonctionnent
par blocs (ECB, CBC, CFB), il est nécessaire de
compléter le message en clair.

Le padding doit être réversible.

Exemples :

• train de bits 10000...000 ;

• séquence de k octets de valeur k (PKCS).

CBC (cipher block chaining)

CIPH
K

OUTPUT BLOCK 1

⊕

OUTPUT BLOCK 2

⊕

OUTPUT BLOCK n

⊕

PLAINTEXT 1 PLAINTEXT 2 INITIALIZATION

VECTOR

INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n

PLAINTEXT n
E

N
C

R
Y

P
T

D
E

C
R

Y
P

T

⊕ ⊕ ⊕

INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n

CIPH-1
K

PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n

OUTPUT BLOCK 1 OUTPUT BLOCK 2 OUTPUT BLOCK n

INITIALIZATION

VECTOR

CIPHERTEXT 1 CIPHERTEXT 2

CIPHERTEXT 1 CIPHERTEXT 2

CIPHERTEXT n

CIPHERTEXT n

CIPH
K

CIPH
K

CIPH-1
K CIPH-1

K

Vecteur d'initialisation (IV)
Pour éviter que deux premiers blocs identiques
soient chiffrés à l'identique, on ajoute un
vecteur d'initialisation.

L'IV n'a pas besoin d'être secret, on peut le
transmettre en clair avec le message chiffré.

Cependant l'IV ne doit pas être prédictible :

• on peut chiffrer une suite prédictible,

• on peut aussi utiliser un générateur
pseudo-aléatoire de qualité
cryptographique.

Pause exercice

Dans le cas de CBC, quelles attaques sont
possibles si :

• on n’utilise pas d’IV (IV=0) ?

• on utilise une séquence d’IV facile à prédire
(0, 1, 2, 3, 4, 5, …) ?

Chiffrement par flots

Pour éviter le padding, on peut utiliser un
algorithme de chiffrement par blocs comme
générateur pour du chiffrement par flots.

Idée : chiffrer uniquement à partir de la clé et
du vecteur d'initialisation, indépendamment du
message en clair (ou dépendant seulement des
blocs précédents du message en clair) qui est
combiné ensuite par XOR.

CFB (Cipher FeedBack)

OUTPUT BLOCK 1

Select Discard

s Bits (b-s) Bits

INPUT BLOCK 1

OUTPUT BLOCK 1

Select Discard

s Bits (b-s) Bits

CIPHK

INITIALIZATION

VECTOR

⊕
PLAINTEXT 1

s Bits

CIPHERTEXT 1

s Bits

INPUT BLOCK 1

⊕
CIPHERTEXT 1

s Bits

PLAINTEXT 1

s Bits

E
N
C
R
Y
P
T

D
E
C
R
Y
P
T

OUTPUT BLOCK n

Select Discard

s Bits (b-s) Bits

INPUT BLOCK n

(b-s) Bits s Bits

OUTPUT BLOCK n

Select Discard

s Bits (b-s) Bits

⊕
PLAINTEXT n

s Bits

CIPHERTEXT n

s Bits

INPUT BLOCK n

(b-s) Bits s Bits

⊕
CIPHERTEXT n

s Bits

PLAINTEXT n

s Bits

OUTPUT BLOCK 2

Select Discard

s Bits (b-s) Bits

INPUT BLOCK 2

(b-s) Bits s Bits

OUTPUT BLOCK 2

Select Discard

s Bits (b-s) Bits

⊕
PLAINTEXT 2

s Bits

CIPHERTEXT 2

s Bits

INPUT BLOCK 2

(b-s) Bits s Bits

⊕
CIPHERTEXT 2

s Bits

PLAINTEXT 2

s Bits

INITIALIZATION

VECTOR

CIPHK CIPHK

CIPHKCIPHKCIPHK

OFB (Output FeedBack)

OUTPUT BLOCK 1

INPUT BLOCK 1

OUTPUT BLOCK 1

CIPH
K

INITIALIZATION

VECTOR

⊕PLAINTEXT 1

CIPHERTEXT 1

INPUT BLOCK 1

⊕CIPHERTEXT 1

PLAINTEXT 1

E
N
C
R
Y
P
T

D
E
C
R
Y
P
T

OUTPUT BLOCK n

INPUT BLOCK n

OUTPUT BLOCK n

⊕PLAINTEXT n

CIPHERTEXT n

INPUT BLOCK n

⊕CIPHERTEXT n

PLAINTEXT n

OUTPUT BLOCK 2

INPUT BLOCK 2

OUTPUT BLOCK 2

⊕PLAINTEXT 2

CIPHERTEXT 2

INPUT BLOCK 2

⊕CIPHERTEXT 2

PLAINTEXT 2

INITIALIZATION

VECTOR

CIPH
K

CIPH
K

CIPH
K

CIPH
KCIPH

K

CTR (Counter)

OUTPUT BLOCK 1

INPUT BLOCK 1

OUTPUT BLOCK 1

CIPH
K

COUNTER 1

⊕PLAINTEXT 1

CIPHERTEXT 1

INPUT BLOCK 1

⊕CIPHERTEXT 1

PLAINTEXT 1

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

COUNTER 1

OUTPUT BLOCK 2

INPUT BLOCK 2

OUTPUT BLOCK 2

COUNTER 2

⊕PLAINTEXT 2

CIPHERTEXT 2

INPUT BLOCK 2

⊕CIPHERTEXT 2

PLAINTEXT 2

COUNTER 2

.CIPH
K

CIPH
K

CIPH
K

INPUT BLOCK n

OUTPUT BLOCK n

COUNTER n

⊕PLAINTEXT n

CIPH
K

OUTPUT BLOCK n

CIPHERTEXT n

INPUT BLOCK n

⊕CIPHERTEXT n

COUNTER n

. CIPH
K

PLAINTEXT n

Génération de compteurs

CTR nécessite une suite de blocs compteurs à
usage unique. On combine deux idées :

1. incrémenter le bloc compteur pour
obtenir une suite de blocs distincts ;

2. choisir un bloc initial à usage unique :

• par exemple en continuant à compter là
où on s'est arrêté ;

• ou encore en choisissant un préfixe
aléatoire unique pour le bloc.

Comparaison des modes

Comment choisir un mode opératoire ? Quelles
sont les propriétés qu’on peut étudier :

• Auto-synchronisation

• Accès randomisé

• Chiffrement et/ou déchiffrement
parallélisable

• Capacité à supporter des erreurs

Quels algorithmes choisir ?

Actuellement, on ne vire personne pour avoir
choisit l’une des combinaisons suivantes pour
garantir la confidentialité :

• AES-256-CBC avec IV aléatoires

• AES-256-CTR avec Nonce distincts

Attention, souvent la confidentialité ne suffit
pas à atteindre le but recherché !

En pratique
• Bibliothèques crypto
from Crypto.Cipher import DES
import base64

def pad(s): return s+(8-len(s)%8)*chr(8-len(s)%8)

msg="The cake is a lie!\n"
key="1337DEADBEEF1664".decode('hex')
iv="0102030405060708".decode('hex')
cipher=DES.new(key,DES.MODE_CBC,iv)
print base64.encodestring(cipher.encrypt(pad(msg)))

• Couteau suisse cryptographique
$ echo yfUy4reTDKkwOf4Nkb5FXQZlGACALaOU \
 | openssl des-cbc -K 1337DEADBEEF1664 \
 -iv 0102030405060708 -a -d
The cake is a lie!

import javax.crypto.*;
import javax.crypto.spec.*;
import java.util.Base64;
import javax.xml.bind.DatatypeConverter;

public class secret {
 public static void main(String args[]) {
 try {
 String message = "The cake is a lie!\n";
 byte[] iv = DatatypeConverter.parseHexBinary("0102030405060708");
 byte[] key = DatatypeConverter.parseHexBinary("1337DEADBEEF1664");
 Cipher DES = Cipher.getInstance("DES/CBC/PKCS5Padding");
 IvParameterSpec I = new IvParameterSpec(iv);
 SecretKey K = new SecretKeySpec(key,"DES");
 DES.init(Cipher.ENCRYPT_MODE, K, I);
 byte[] res = DES.doFinal(message.getBytes("utf-8"));
 System.out.println(Base64.getEncoder().encodeToString(res));
 } catch(Exception e) {
 System.out.println("Oups...");
 }
 }
}

Pause exercice
Un protocole naïf

Alice et Bob ont échangé une clé secrète de 256 bits et
élu l’algorithme AES-256-CBC. Ils souhaitent établir un
canal de communication sécurisé entre eux, sur une
socket TCP, comme suit. Eve écoute les échanges
« sécurisés ».

Pour transmettre un message M, on applique d’abord le
padding, puis on choisit un IV aléatoire, on chiffre M avec
AES-CBC et on transmet le résultat C préfixé par l’IV. À la
réception, les messages sont acquittés par ACK ou NACK.

Identifier les nombreux problèmes de ce protocole.
Expliquer comment Eve peut déchiffrer facilement les
messages transmis !

Security Flaws Induced by CBC Padding

Applications to SSL, IPSEC, WTLS...

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
Serge.Vaudenay@epfl.ch

Abstract. In many standards, e.g. SSL/TLS, IPSEC, WTLS, messages
are first pre-formatted, then encrypted in CBC mode with a block cipher.
Decryption needs to check if the format is valid. Validity of the format is
easily leaked from communication protocols in a chosen ciphertext attack
since the receiver usually sends an acknowledgment or an error message.
This is a side channel.
In this paper we show various ways to perform an efficient side channel
attack. We discuss potential applications, extensions to other padding
schemes and various ways to fix the problem.

EUROCRYPT

2002

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Pause exercice (suite)

Un protocole naïf

Alice et Bob ont échangé une clé secrète de
256 bits et élu l’algorithme AES-256-CTR. Ils
souhaitent établir un canal de communication
sécurisé entre eux, sur une socket TCP, comme
suit. Eve écoute les échanges « sécurisés ».

(…)

On remplace AES-256-CBC par AES-256-CTR,
est-ce que c’est mieux… ou pire ?

Protocole cryptographique

Un protocole cryptographique est construit à
partir de briques, les primitives
cryptographiques, dans le but d’assurer un
certain nombre de propriétés, typiquement :

• confidentialité ;

• intégrité ;

• authenticité ;

• non répudiabilité.

Confidentialité

• Assurer que seules les deux parties ont accès
aux données échangées.

• Empêche l'écoute des données en transit.

• Selon le contexte cette confidentialité peut
être persistante dans le temps.

Intégrité

• Assurer la correction et la consistance des
données transmises.

• Empêche de modifier les données en transit.

• Empêche de forger des nouvelles données.

• Selon le contexte ce contrôle d'intégrité peut
se faire avec ou sans répudiabilité.

Authenticité
• Permettre aux deux parties en présence de

valider l'identité de l'autre partie.

• Empêche les accès non autorisés mais aussi...

• Empêche les attaques de type homme du
milieu.

• Affaibli parfois dans le cadre client/serveur
par une authentification du serveur
uniquement.

Attention à la notion d'identité (IP, DNS, ... ?)

Quelques primitives cryptographiques

• Cryptographie symétrique (à clé secrète) ;

• Cryptographie asymétrique (à clé publique) ;

• Générateurs de nombres pseudo-aléatoires
de qualité cryptographique ;

• Fonctions de hachage de qualité
cryptographique ;

• Codes d’authentification de messages (MAC) ;

• Algorithmes de signature numérique.

