
CRYPTO
contrôle d'intégrité

Nicolas Ollinger
M1 informatique — 2025/2026

La semaine dernière
Un protocole naïf

Alice et Bob ont échangé une clé secrète de 256 bits et
élu l’algorithme AES-256-CBC. Ils souhaitent établir un
canal de communication sécurisé entre eux, sur une
socket TCP, comme suit. Eve écoute les échanges
« sécurisés ».

Pour transmettre un message M, on applique d’abord le
padding, puis on choisit un IV aléatoire, on chiffre M avec
AES-CBC et on transmet le résultat C préfixé par l’IV. À la
réception, les messages sont acquittés par ACK ou NACK.

Identifier les nombreux problèmes de ce protocole.
Expliquer comment Eve peut déchiffrer facilement les
messages transmis !

Security Flaws Induced by CBC Padding

Applications to SSL, IPSEC, WTLS...

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
Serge.Vaudenay@epfl.ch

Abstract. In many standards, e.g. SSL/TLS, IPSEC, WTLS, messages
are first pre-formatted, then encrypted in CBC mode with a block cipher.
Decryption needs to check if the format is valid. Validity of the format is
easily leaked from communication protocols in a chosen ciphertext attack
since the receiver usually sends an acknowledgment or an error message.
This is a side channel.
In this paper we show various ways to perform an efficient side channel
attack. We discuss potential applications, extensions to other padding
schemes and various ways to fix the problem.

EUROCRYPT

2002

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Padding oracle attack

def alice(msg):
M=pad(msg)
IV=genIV()
C=AES-256-CBC(K,IV,M)
send(IV·C)

def bob(msg):
IV·C=msg
try:
MP=AES-256-CBC-1(K,IV,C)
M=unpad(MP)
send(ACK)
return M

except:
send(NACK)

Padding oracle attack
Eve peut déchiffrer facilement les messages
transmis en utilisant Bob comme Oracle !

def oracle(msg):
sendto(bob,msg)
return recvfrom(bob) == ACK

En supposant que msg a la bonne taille, l'oracle
répond vrai si et seulement si AES-256-CBC-1(K,IV,C)
a un padding valide.

Si C est composé d'un unique bloc : oracle(IV·C)
est vrai si et seulement si IV⊕AES-256-CBCK-1(K,IV,C)
termine par kkk···k (k fois).

Padding oracle attack

Si C est composé d'un unique bloc : oracle(IV·C)
est vrai si et seulement si IV⊕AES-256-CBCK-1(K,IV,C)
termine par kkk···k (k fois).

L'astuce consiste à calculer oracle((IV⊕Δ)·C) en
faisant varier Δ pour déchiffrer M octet par octet,
en faisant parcourir au padding les valeurs
successives 1, 22, 333, 4444, 55555, ...

Astuce : remarquer que lorsque Δ parcourt les
256 valeurs de la forme 0000...00x, l'oracle
retourne vrai au plus 2 fois.

Protocole cryptographique

Un protocole cryptographique est construit à
partir de briques, les primitives
cryptographiques, dans le but d’assurer un
certain nombre de propriétés, typiquement :

• confidentialité ;

• intégrité ;

• authenticité ;

• non répudiabilité.

Confidentialité

• Assurer que seules les deux parties ont accès
aux données échangées.

• Empêche l'écoute des données en transit.

• Selon le contexte cette confidentialité peut
être persistante dans le temps.

Intégrité

• Assurer la correction et la consistance des
données transmises.

• Empêche de modifier les données en transit.

• Empêche de forger des nouvelles données.

• Selon le contexte ce contrôle d'intégrité peut
se faire avec ou sans répudiabilité.

Authenticité
• Permettre aux deux parties en présence de

valider l'identité de l'autre partie.

• Empêche les accès non autorisés mais aussi...

• Empêche les attaques de type homme du
milieu.

• Affaibli parfois dans le cadre client/serveur
par une authentification du serveur
uniquement.

Attention à la notion d'identité (IP, DNS, ... ?)

Quelques primitives cryptographiques

• Cryptographie symétrique (à clé secrète) ;

• Cryptographie asymétrique (à clé publique) ;

• Générateurs de nombres pseudo-aléatoires
de qualité cryptographique ;

• Fonctions de hachage de qualité
cryptographique ;

• Codes d’authentification de messages (MAC) ;

• Algorithmes de signature numérique.

Codes MAC

Code d’authentification MAC

Exemple : CBC-MAC

Utiliser le dernier bloc d’un chiffrement CBC
(avec une autre clé !!!)

Possibilité de forger des MAC valides sur des
messages de taille variable : CBC-MAC n'est
pas sûr pour des messages de taille variable.

CMAC (NIST 800-38B)

Amélioration de CBC-MAC.

…

K1

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
*

K2

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
* 10…0…

K1

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
*

 K2

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
*

10…0……

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf

Pause exercice

Alice a la brillante idée de combiner AES-256-
CBC avec AES-CBC-MAC. Munie d’une clé secrète
K de 256 bits, elle chiffre un message M comme
suit :

Quelle est l’énorme faille dans sa proposition ?

Et en remplaçant AES-CBC-MAC par AES-CMAC ?

EK(M) ∥HK(M)

Exercice à emporter

Protocole pour un canal sécurisé

Alice et Bob ont échangé des clés secrètes de
256 bits et élu les algorithmes AES-256-CTR
et AES-CMAC. Ils souhaitent établir un canal
de communication sécurisé entre eux, sur une
socket TCP. Eve écoute les échanges
« sécurisés ».

Proposer un protocole cryptographique qui
permet d’assurer la confidentialité et l’intégrité
des échanges.

Hachage

Fonction de hachage

Fonction de compression qui associe une
empreinte de taille fixe à un message de taille
arbitraire.

Application : table de hachage

Propriété : les valeurs prises par H doivent être
uniformément réparties ; faible probabilité
de collision H(x)=H(y).

H : {0,1}∗ → {0,1}t

Hachage cryptographique

Un ingrédient essentiel dans les protocoles
modernes : permet d’agencer des primitives
(par ex. on signe l’empreinte des messages).

Propriétés recherchées pour H :

1. one-way : difficile de retrouver x à partir
de H(x).

2. résistance aux collisions : difficile de
trouver x et y tels que H(x) = H(y).

3. indiscernable d’une fonction aléatoire.

Construction de Merkle–Damgård
Transforme une fonction de compression one-
way résistante aux collisions en une fonction
de hachage de qualité cryptographique.

m =m1�m2� · · · �mk
H0 = IV
Hi = F(Hi�1,mi)

H(m) = G(Hk)

F : {0,1}s � {0,1}b � {0,1}s

G : {0,1}s � {0,1}t

Pause exercice

Charlie trouve que la construction MD
ressemble beaucoup au chaînage CBC de la
semaine dernière. Il propose de prendre IV=0
et comme fonction de compression le chaînage
d’AES-256 avec la clé 0.

Montrer que cette fonction n’est pas du tout
résistante aux collisions ! Expliquez comment
construire une deuxième préimage pour tout
message de deux blocs.

Padding MD-compatible

Conditions suffisantes sur le padding pour que
les collisions MD correspondent à des collisions
de la fonction de compression :

x est un préfixe de Pad(x).

si |x| = |y| alors |Pad(x)| = |Pad(y)|

sinon les derniers blocs de Pad(x) et Pad(y)
différent.

MD5 (RFC 1321)

Inventé par Rivest en 1992

Très populaire malgré une première faille
identifiée dès 1995.

Empreinte de 128 bits (blocs de 512 bits)

Conçu pour être rapide sur archi 32 bits.

Padding : on ajoute un bit à 1 puis des 0 pour
obtenir une taille congrue à 448 mod 512 et
enfin on ajoute la longueur initiale du message
codée sur 64 bits.

https://www.ietf.org/rfc/rfc1321.txt

A,B=0x01234567,0x89abcdef

C,D=0xfedcba98,0x76543210

Pour i de 0 à 63:

 T[i] = int(4294967296*abs(sin(i)))

Pour i de 0 à N/16-1:

 Pour j de 0 à 15: X[j]=M[i*16+j]

 AA,BB,CC,DD=A,B,C,D

 Round1()

 Round2()

 Round3()

 Round4()

 A,B,C,D=A+AA,B+BB,C+CC,D+DD

def Round1():

 F(X,Y,Z) = XY v not(X) Z

 — Let [abcd k s i] denote the operation

 — a=b+((a+F(b,c,d)+X[k]+T[i]) <<< s).

 [ABCD 0 7 1] [DABC 1 12 2]

 [CDAB 2 17 3] [BCDA 3 22 4]

 [ABCD 4 7 5] [DABC 5 12 6]

 [CDAB 6 17 7] [BCDA 7 22 8]

 [ABCD 8 7 9] [DABC 9 12 10]

 [CDAB 10 17 11] [BCDA 11 22 12]

 [ABCD 12 7 13] [DABC 13 12 14]

 [CDAB 14 17 15] [BCDA 15 22 16]

def Round2():

 G(X,Y,Z) = XZ v Y not(Z)

 — Let [abcd k s i] denote the operation

 — a=b+((a+G(b,c,d)+X[k]+T[i]) <<< s).

 [ABCD 1 5 17] [DABC 6 9 18]

 [CDAB 11 14 19] [BCDA 0 20 20]

 [ABCD 5 5 21] [DABC 10 9 22]

 [CDAB 15 14 23] [BCDA 4 20 24]

 [ABCD 9 5 25] [DABC 14 9 26]

 [CDAB 3 14 27] [BCDA 8 20 28]

 [ABCD 13 5 29] [DABC 2 9 30]

 [CDAB 7 14 31] [BCDA 12 20 32]

def Round3():

 H(X,Y,Z) = X xor Y xor Z

 — Let [abcd k s i] denote the operation

 — a=b+((a+H(b,c,d)+X[k]+T[i]) <<< s).

 [ABCD 5 4 33] [DABC 8 11 34]

 [CDAB 11 16 35] [BCDA 14 23 36]

 [ABCD 1 4 37] [DABC 4 11 38]

 [CDAB 7 16 39] [BCDA 10 23 40]

 [ABCD 13 4 41] [DABC 0 11 42]

 [CDAB 3 16 43] [BCDA 6 23 44]

 [ABCD 9 4 45] [DABC 12 11 46]

 [CDAB 15 16 47] [BCDA 2 23 48]

def Round4():

 I(X,Y,Z) = Y xor (X v not(Z))

 — Let [abcd k s i] denote the operation

 — a=b+((a+I(b,c,d)+X[k]+T[i]) <<< s).

 [ABCD 0 6 49] [DABC 7 10 50]

 [CDAB 14 15 51] [BCDA 5 21 52]

 [ABCD 12 6 53] [DABC 3 10 54]

 [CDAB 10 15 55] [BCDA 1 21 56]

 [ABCD 8 6 57] [DABC 15 10 58]

 [CDAB 6 15 59] [BCDA 13 21 60]

 [ABCD 4 6 61] [DABC 11 10 62]

 [CDAB 2 15 63] [BCDA 9 21 64]

Collisions MD5 (bloc unique)

>>> from hashlib import md5

>>> def calc(s): print md5(''.join(s.split()).decode('hex')).hexdigest()

...

>>> calc('''

... 4dc968ff0ee35c209572d4777b721587

... d36fa7b21bdc56b74a3dc0783e7b9518

... afbfa200a8284bf36e8e4b55b35f4275

... 93d849676da0d1555d8360fb5f07fea2

... ''')

008ee33a9d58b51cfeb425b0959121c9

>>>

>>> calc('''

... 4dc968ff0ee35c209572d4777b721587

... d36fa7b21bdc56b74a3dc0783e7b9518

... afbfa202a8284bf36e8e4b55b35f4275

... 93d849676da0d1d55d8360fb5f07fea2

... ''')

008ee33a9d58b51cfeb425b0959121c9

http://eprint.iacr.org/2012/040.pdf

Collisions MD5 (préfixe choisi)

$ md5 *.py

MD5 (md5a.py) = c8291765efccefa50638084c8670027b

MD5 (md5b.py) = c8291765efccefa50638084c8670027b

$./md5a.py

This is a triumph.

I'm making a note here:

HUGE SUCCESS.

It's hard to overstate

my satisfaction.

Aperture Science

We do what we must

because we can.

For the good of all of us.

Except the ones who are dead.

$./md5b.py

The cake is a lie.

The cake is a lie.

The cake is a lie.

The cake is a lie.

The cake is a lie.

Collisions MD5 (préfixes distincts)

$ md5 plane.jpg ship.jpg

MD5 (plane.jpg) = 253dd04e87492e4fc3471de5e776bc3d

MD5 (ship.jpg) = 253dd04e87492e4fc3471de5e776bc3d

http://natmchugh.blogspot.fr/2015/02/create-your-own-md5-collisions.html
http://natmchugh.blogspot.fr/2015/02/create-your-own-md5-collisions.html

http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/

FIPS PUB 180-4

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Secure Hash Standard (SHS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.FIPS.180-4

August 2015

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

SHA-1 et SHA-2

Développé par la NSA vers 1995

Empreinte de 160 bits pour SHA-1

SHA-2 plus sûr mais moins rapide à calculer

. These algorithms enable the determination of a message’

Algorithm Message Size

(bits)

Block Size

(bits)

Word Size

(bits)

Message Digest Size

(bits)

SHA-1 < 2
64

512 32 160

SHA-224 < 2
64

512 32 224

SHA-256 < 2
64

512 32 256

SHA-384 < 2
128

1024 64 384

SHA-512 < 2
128

1024 64 512

SHA-512/224 < 2
128

1024 64 224

SHA-512/256 < 2
128

1024 64 256

Figure 1: Secure Hash Algorithm Properties

Freestart collision for full SHA-1
]

Marc Stevens1o, Pierre Karpman2,3,4f, and Thomas Peyrin4b

1 Centrum Wiskunde & Informatica, The Netherlands
2 Inria, France

3 École polytechnique, France
4 Nanyang Technological University, Singapore

marc.stevens@cwi.nl, pierre.karpman@inria.fr, thomas.peyrin@ntu.edu.sg

Abstract. This article presents an explicit freestart colliding pair for SHA-1, i.e. a colli-
sion for its internal compression function. This is the first practical break of the full SHA-1,
reaching all 80 out of 80 steps. Only 10 days of computation on a 64-GPU cluster were
necessary to perform this attack, for a cost of approximately 257.5 calls to the compression
function of SHA-1. This work builds on a continuous series of cryptanalytic advancements
on SHA-1 since the theoretical collision attack breakthrough of 2005. In particular, we reuse
the recent work on 76-step SHA-1 of Karpman et al. from CRYPTO 2015 that introduced
an e�cient framework to implement (freestart) collisions on GPUs; we extend it by incorpo-
rating more sophisticated accelerating techniques such as boomerangs. We also rely on the
results of Stevens from EUROCRYPT 2013 to obtain optimal attack conditions; using these
techniques required further refinements for this work.
Freestart collisions do not directly imply a collision for the full hash function. However,

EUROCRYPT

2016

http://ia.cr/2015/967

CRYPTO

2017

https://shattered.it

EUROCRYPT

2019

https://who.paris.inria.fr/Gaetan.Leurent/files/SHA1_EC19.pdf

Real World

Crypto

2020

https://sha-mbles.github.io

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

August

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

A Security

Function
Output

Size

Security Strengths in Bits

Collision Preimage 2nd Preimage

SHA-1 160 < 80 160 160 – L (M)

SHA-224 224 112 224 min(224, 256 – L (M))

SHA-512/224 224 112 224 224

SHA-256 256 128 256 256 – L (M)

SHA-512/256 256 128 256 256

SHA-384 384 192 384 384

SHA-512 512 256 512 512 – L (M)

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256

SHA3-384 384 192 384 384

SHA3-512 512 256 512 512

SHAKE128 d min(d/2, 128) ≥ min(d, 128) min(d, 128)

SHAKE256 d min(d/2, 256) ≥ min(d, 256) min(d, 256)

Table 4: Security strengths of the SHA-1, SHA-2, and SHA-3 functions

Que faut-il utiliser ?

MD5 et SHA-1 sont désuets

SHA-256 & co compromis raisonnable

SHA-3 pour le futur ? reste à le tester…

Codes HMAC

HMAC : du hachage au MAC

Principe : transformer toute fonction de
hachage de qualité cryptographique en un code
d’authentification de message (MAC).

HMAC-MD5

HMAC-SHA-1

HMAC-SHA256

FIPS PUB 198-1

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

The Keyed-Hash Message Authentication Code
(HMAC)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

⊕ ⊕

Table 1: The HMAC Algorithm

STEPS STEP-BY-STEP DESCRIPTION

Step 1 If the length of K = B: set K0 = K. Go to step 4.

Step 2 If the length of K > B: hash K to obtain an L byte string, then append (B-L)

zeros to create a B-byte string K0 (i.e., K0 = H(K) || 00...00). Go to step 4.

Step 3

If the length of K < B: append zeros to the end of K to create a B-byte string K0

(e.g., if K is 20 bytes in length and B = 64, then K will be appended with 44

zero bytes x’00’).

Step 4 Exclusive-Or K0 with ipad to produce a B-byte string: K0 ⊕ ipad.

Step 5 Append the stream of data 'text' to the string resulting from step 4:

(K0 ⊕ ipad) || text.

Step 6 Apply H to the stream generated in step 5: H((K0 ⊕ ipad) || text).

Step 7 Exclusive-Or K0 with opad: K0 ⊕ opad.

Step 8 Append the result from step 6 to step 7:

(K0 ⊕ opad) || H((K0 ⊕ ipad) || text).

Step 9 Apply H to the result from step 8:

H((K0 ⊕ opad)|| H((K0 ⊕ ipad) || text)).

Determine K0
Steps 1-3:

K0 ⊕ ipad

H((K0 ⊕ ipad) || text)

K0 ⊕ opad

Step 4:

Step 5:

Step 7:

Step 8:

Step 9:

Step 6:

H((K0 ⊕ opad) || H((K0 ⊕ ipad) || text))

Figure 1: Illustration of the HMAC Construction

(K0 ⊕ opad) || H ((K0 ⊕ ipad) || text)

(K0 ⊕ ipad) || text

λ

λ

2.3 HMAC Parameters and Symbols

HMAC uses the following parameters:

B Block size (in bytes) of the input to the Approved

H An Approved hash function.

ipad Inner pad; the byte x‘36’ repeated B times.

K Secret key shared between the originator and the

K0 The key K after any necessary pre-processing t

L Block size (in bytes) of the output of the Approved

opad Outer pad; the byte x‘5c’ repeated B times.

text The data on which the HMAC is calculated; te

The length of text is n bits, where 0 ≤ n < 2
B
 - 8

x ‘N’ Hexadecimal notation, where each symbol in th

bits.

|| Concatenation.

⊕ Exclusive-Or operation.

Pause exercice

Cette histoire de HMAC semble bien compliqué
à Alice, qui préfère utiliser MD5(K‖M) pour le
contrôle d'intégrité de ses messages.

Pourquoi est-ce une très mauvaise idée ?

Keying Hash Functions for Message Authentication

Mihir Bellare∗ Ran Canetti† Hugo Krawczyk‡

June 1996

Abstract

The use of cryptographic hash functions like MD5 or SHA for message authentication has
become a standard approach in many Internet applications and protocols. Though very easy to
implement, these mechanisms are usually based on ad hoc techniques that lack a sound security
analysis.

We present new constructions of message authentication schemes based on a cryptographic
hash function. Our schemes, NMAC and HMAC, are proven to be secure as long as the un-
derlying hash function has some reasonable cryptographic strengths. Moreover we show, in a
quantitative way, that the schemes retain almost all the security of the underlying hash function.
In addition our schemes are efficient and practical. Their performance is essentially that of the
underlying hash function. Moreover they use the hash function (or its compression function) as
a black box, so that widely available library code or hardware can be used to implement them
in a simple way, and replaceability of the underlying hash function is easily supported.

http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

New Proofs for NMAC and HMAC:

Security without Collision-Resistance

Mihir Bellare
⇤

April 2014

Abstract

HMAC was proved in [4] to be a PRF assuming that (1) the underlying compression function
is a PRF, and (2) the iterated hash function is weakly collision-resistant. However, subsequent
attacks showed that assumption (2) is false for MD5 and SHA-1, removing the proof-based
support for HMAC in these cases. This paper proves that HMAC is a PRF under the sole
assumption that the compression function is a PRF. This recovers a proof based guarantee since
no known attacks compromise the pseudorandomness of the compression function, and it also
helps explain the resistance to attack that HMAC has shown even when implemented with hash
functions whose (weak) collision resistance is compromised. We also show that an even weaker-
than-PRF condition on the compression function, namely that it is a privacy-preserving MAC,
su�ces to establish HMAC is a secure MAC as long as the hash function meets the very weak
requirement of being computationally almost universal, where again the value lies in the fact
that known attacks do not invalidate the assumptions made.

http://eprint.iacr.org/2006/043.pdf

