| [<>

controle d'intégrite

Nicolas Ollinger
M1 informatique — 2025/2026

La semaine derniere

Un protocole naif

Alice et Bob ont échangée une clé secrete de 256 bits et
elu l'algorithme AES-256-CBC. Ils souhaitent établir un
canal de communication sécurise entre eux, sur une
socket TCP, comme suit. Eve écoute les eéchanges

« SECUurises ».

Pour transmettre un message M, on applique d’abord le

padding, puis on choisit un IV aléatoire, on chiffre M avec
AES-CBC et on transmet le resultat C préfixé par I'IV. A la
reception, les messages sont acquittés par ACK ou NACK.

Identifier les nombreux problemes de ce protocole.
Expliqguer comment Eve peut déchiffrer facilement les
messages transmis |

Security Flaws Induced by CBC Padding
Applications to SSL, IPSEC, WTLS...

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL) EUROCRYPT
Serge.VaudenayQepfl.ch 2002

Abstract. In many standards, e.g. SSL/TLS, IPSEC, WTLS, messages
are first pre-formatted, then encrypted in CBC mode with a block cipher.
Decryption needs to check if the format is valid. Validity of the format is
easily leaked from communication protocols in a chosen ciphertext attack
since the receiver usually sends an acknowledgment or an error message.
This is a side channel.

In this paper we show various ways to perform an efficient side channel
attack. We discuss potential applications, extensions to other padding
schemes and various ways to fix the problem.

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Padding oracle attack

def alice(msg): def bob(msg):

M=pad(msg) IV-C=msg
IV=genIV() try:
C=AES-256-CBC(K,IV,M) MP=AES-256-CBC-1(K,IV,C)
send(IV-C) M=unpad (MP)

send (ACK)

return M

except:

send (NACK)

Padding oracle attack

Eve peut déchiffrer facilement les messages
transmis en utilisant Bob comme Oracle |

def oracle(msg):
sendto(bob,msg)
return recvfrom(bob) == ACK

En supposant que msg a la bonne taille, |'oracle
repond vrai si et seulement si AES-256-CBC-1(K,IV,C)

a un padding valide.

Si C est composée d'un unique bloc : oracle(IV-C)
est vrai si et seulement si IVeAES-256-CBCk-1(K,IV,C)

termine par kkk- - -k (k fois).

Padding oracle attack

Si C est composé d'un unique bloc : oracle(IV-C)
est vrai si et seulement si IVeAES-256-CBCk-1(K,IV,C)
termine par kkk- - -k (k fois).

L'astuce consiste a calculer oracle((IVeA):-C) en
faisant varier A pour déchiffrer M octet par octet,
en faisant parcourir au padding les valeurs
successives 1, 22, 333, 4444, 55555, ...

Astuce : remarquer que lorsque A parcourt les
256 valeurs de |la forme 0000. . .00x, |'oracle
retourne vrai au plus 2 fois.

Protocole cryptographique

Un protocole cryptographique est construit a
partir de brigues, les primitives
cryptographiques, dans le but d’assurer un
certain nombre de proprietes, typiqguement :

« confidentialite ;
e intégrite ;
e authenticite ;

* non repudiabilitée.

Confidentialite

« Assurer que seules les deux parties ont acces
aux donnees eéchangees.

« Empéche |'écoute des données en transit.

* Selon le contexte cette confidentialité peut
étre persistante dans le temps.

Integrite

e Assurer la correction et la consistance des
données transmises.

« Empéche de modifier les données en transit.
« Empéche de forger des nouvelles donneées.

« Selon le contexte ce controle d'integrité peut
se faire avec ou sans répudiabilité.

Authenticite

« Permettre aux deux parties en présence de
valider l'identité de l'autre partie.

« Empéche les acces non autorisés mais aussi...

« Empéche les attaques de type homme du
milieu.

o Affaibli parfois dans le cadre client/serveur

par une authentification du serveur
uniquement.

Attention a la notion d'identité (IP, DNS, ... ?)

Quelques primitives cryptographiques

« Cryptographie symetrique (a clé secrete) ;
 Cryptographie asymetrique (a clé publique) ;

« Géneérateurs de nombres pseudo-aléatoires
de qualité cryptographique ;

« Fonctions de hachage de qualité
cryptographique ;

 Codes d’authentification de messages (MAC) ;

« Algorithmes de signature numeérique.

Codes MAC

Code d’authentification MAC

Sender Channel Receiver

Secret Key

YN

Message is Message has
authentic been altered

MAC = Message Authentication Code

Exemple : CBC-MAC

ml m?2 mx
0 —)é;)é; >)é;
Y Y Y
k —> E k —> E k — E

result

Utiliser le dernier bloc d’'un chiffrement CBC
(avec une autre cle !!l)

Possibilite de forger des MAC valides sur des
messages de taille variable : CBC-MAC n'est
pas slr pour des messages de taille variable.

CMAC (NIST 800-38B)

CIPH,

- K1

CIPH,

MSBTlen

CIPH,

Ameélioration de CBC-MAC.

- K2

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf

Pause exercice

Alice a la brillante idée de combiner AES-256-
CBC avec AES-CBC-MAC. Munie d’une clé secrete

K de 256 bits, elle chiffre un message M comme
suit :

Ex(M) || Hk(M)

Quelle est I'énorme faille dans sa proposition ?

Et en remplacant AES-CBC-MAC par AES-CMAC ?

Exercice a emporter

Protocole pour un canal sécurisé

Alice et Bob ont échangé des clés secretes de

256 bits et élu les algorithmes AES-256-CTR
et AES-CMAC. Ils souhaitent etablir un canal

de communication sécurisé entre eux, sur une
socket TCP. Eve ecoute les echanges

« Securises ».

Proposer un protocole cryptographique qui
permet d’'assurer la confidentialité et lI'intégrite
des échanges.

Hachage

Fonction de hachage

H:{0,1}" — {0, l}t

Fonction de compression qui associe une
empreinte de taille fixe a un message de taille

arbitraire.
Application : table de hachage

Proprieteé : les valeurs prises par H doivent étre
uniformément réparties ; faible probabilité

de collision H(x)=H(y).

Hachage cryptographique

Un ingrédient essentiel dans les protocoles
modernes : permet d'agencer des primitives
(par ex. on signe I'empreinte des messages).

Proprietés recherchées pour H :

1. one-way : difficile de retrouver x a partir
de H(x).

2. résistance aux collisions : difficile de
trouver x et y tels que H(x) = H(y).

3. indiscernable d'une fonction aléeatoire.

Construction de Merkle-Damgard

Transforme une fonction de compression one-
way réesistante aux collisions en une fonction
de hachage de qualité cryptographique.

m = mz|[mal|-- - ||my
Ho =1V F:{0,1}°*x {0,1}* - {0,1}°
H; = F(Hi_1,m;) G:{0,1}° - {0, 1}
H(m) = G(Hy)
Message| Message] Message
block 1] block2| block n
Messagd Message] Message| Length
block 1 | block2| block n | padding

R T Y
Uk KR R B ()

Pause exercice

Charlie trouve que la construction MD
ressemble beaucoup au chainage CBC de la
semaine derniere. Il propose de prendre IV=0
et comme fonction de compression le chainage
d’AES-256 avec la cle 0.

Montrer que cette fonction n’‘est pas du tout
résistante aux collisions ! Expliquez comment
construire une deuxieme préimage pour tout
message de deux blocs.

Padding MD-compatible

Conditions suffisantes sur le padding pour que
les collisions MD correspondent a des collisions
de la fonction de compression :

x est un préfixe de Pad(x).
si | x| = |y| alors |Pad(x)| = |Pad(y)]|

sinon les derniers blocs de Pad(x) et Pad(y)
different.

MD5 (RFC 1321)

Inventé par Rivest en 1992

Tres populaire malgré une premiere faille
identifieée des 1995.

Empreinte de 128 bits (blocs de 512 bits)
Concu pour étre rapide sur archi 32 bits.

Padding : on ajoute un bit a 1 puis des 0 pour
obtenir une taille congrue a 448 mod 512 et
enfin on ajoute la longueur initiale du message
codee sur 64 bits.

https://www.ietf.org/rfc/rfc1321.txt

A, B=0x01234507,0x89abcdef
C,D=0xfedcba98,0x 76543210
Pour i de 0 a 63:

T[i] = int(4294967296%abs(sin(i)))
Pour 1 de O a N/
Pour j de ©
AA ,BB,CC, DD=
?oundi()
Round2 ()
Round3()
Round4 ()
A,B,C,D=A+AA,B+BB,C+CC,6 D+DD

10-1:
a 15: X[j]=M[i*16+]]
A B,C,D

def Round1():
F(X, Y, Z) = XY v not(X) Z
— Let [abcd k s i] denote the operation

— a=b+((a+F(b,c,d)+X[k]+T[i]) <<< s).
ABCD @ 7 4] [DABC 1 12 2
CDAB 2 17 3] [BCDA 3 22 4
ABCD 4 7 5] [DABC 5 12 6
CDAB 6 17 7] [BCDA 7 22 8§
'ABCD 8 7 9] [DABC 9 12 10
‘CDAB 1@ 17 11] [BCDA 11 22 12
'ABCD 12 7 13] [DABC 13 12 14
‘CDAB 14 17 15] [BCDA 15 22 16’

def Round2():
G(X,Y,Z) = XZ v Y not(Z)
— Let [abcd k s i] denote the operation
— a=b+((a+G(b,c,d)+X[k]+T[i]) <<< s).

'ABCD 1 5 17] [DABC 6 9 18
‘CDAB 11 14 19] [BCDA 0 20 20
'ABCD 5 5 21] [DABC 10 9 22
‘CDAB 15 14 23] [BCDA 4 20 24
'ABCD 9 5 25] [DABC 14 9 26
‘CDAB 3 14 27] [BCDA 8 20 28
'ABCD 13 5 29] [DABC 2 9 30
‘CDAB 7 14 31] [BCDA 12 20 32

def Round3():

H(X Y, Z) = X xor Y xor Z

— Let [abcd k s i] denote the operation

— a=b+((a+H(b,c,d)+X[k]+T[i]) <<< s).
'ABCD 5 4 33] [DABC 8 11 34
‘CDAB 11 16 35] [BCDA 14 23 36
'ABCD 1 4 37] [DABC 4 11 38
‘CDAB 7 16 39] [BCDA 10 23 40
'ABCD 13 4 41] [DABC © 11 42
‘CDAB 3 16 43] [BCDA 6 23 44°
‘ABCD O 4 45] [DABC 12 11 46
‘CDAB 15 16 47] [BCDA 2 23 48

def Round4():

I(X,Y,Z) = Y xor (X v not(Z))

— Let [abcd k s i] denote the operation

— a=b+((a+I(b,c,d)+X[k]+T[i]) <<< s).
'ABCD @ 6 49] [DABC 7 10 50
‘CDAB 14 15 51] [BCDA 5 21 52
'ABCD 12 6 53] [DABC 3 10 54’
‘CDAB 10 15 55] [BCDA 1 21 56
'ABCD 8 6 57] [DABC 15 10 58’
‘CDAB 6 15 59] [BCDA 13 21 60’
ABCD 4 6 61] [DABC 11 10 62
‘CDAB 2 15 63] [BCDA 9 21 64

Collisions MD5 (bloc unique)

>>> from hashlib import mdoS

>>> def calc(s): print md5(''. join(s.split()).decode('hex')).hexdigest()

>>> cale('"!
.. 4dcO68ffleel35c209572d4 7' b 121587
.. d36fa7’b21bdc56b74a3dc@783e7b9518
.. afbfa200a8284bf36e8e4bo55b35f4275
. 93d8496'76dald1555d8360fbo5f07 fea?

oY)

008ee33a9do8b51 cfeb425b0959121¢c9

>

>>> calc(
.. 4dcO68ff0eel35c209572d4 7' b 121587
.. d36fa7b21bdc56b74a3dc@783eT7b9518
.. afbfa202a8284bf36e8e4bo55b35f4275
. 93d849676dald1do55d8360fbof07 fea?

...|||>
008ee333a9db8bb1cfebd25b0®959121 9

http://eprint.iacr.org/2012/040.pdf

Collisions MD5 (preéfixe choisi)

$ md5 *.py
MD5 (mdba.py)
MD5 (mdbb.py)

$./mdba.py
This 1s a triumph.

I'm making a note here:

HUGE SUCCESS.

It's hard to overstate

my satisfaction.

Aperture Science

We do what we must

because we can.

For the good of all of us.
Except the ones who are dead.

$./md5b.

The
The
The
The
The

cake
cake
cake
cake
cake

c8291765efccefab638084c8670027b
c8291765efccefab638084c8670027b

PY
1S
1S
1S
1S
1S

v Vv O O ©

lie.
lie.
lie.
lie.
lie.

Collisions MD5 (prefixes distincts)

$ md5 plane. jpg ship. jpg
MD5 (plane.jpg) = 253dd04e87492e4fc3471de5e776bc3d
MD5 (ship.jpg) = 253dd04e87492e4fc3471de5e776bc3d

http://natmchugh.blogspot.fr/2015/02/create-your-own-md5-collisions.html
http://natmchugh.blogspot.fr/2015/02/create-your-own-md5-collisions.html

rmful Today
rtificate

MD5 Considered Ha
Creating a roguc CA ce

New York, USA
CWI, Netherlands
Noisebridge/T or, SF
EPFL, gwitzerland

Alexander Sotirov
Marc Stevens

jacob Appelbaum

Arjen Lenstra
David Molnar UC Berkeley, USA

Dag Arne Osvik EPFL, switzerland
Benne de Weger TU/e, Netherlands

http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/

FIPS PUB 180-4

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Secure Hash Standard (SHS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.FIPS.180-4

August 2015

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

SHA-1 et SHA-2

Développé par la NSA vers 1995
Empreinte de 160 bits pour SHA-1

SHA-2 plus sdr mais moins rapide a calculer

Algorithm Message Size Block Size Word Size Message Digest Size
(bits) (bits) (bits) (bits)
SHA-1 < 20 512 32 160
SHA-224 < 2% 512 32 224
SHA-256 < 20 512 32 256
SHA-384 < ple® 1024 64 384
SHA-512 <" 1024 64 512
SHA-512/224 <! 1024 64 224
SHA-512/256 < ple® 1024 64 256

Figure 1: Secure Hash Algorithm Properties

EUROCRYPT
2016

Freestart collision for full SHA-1*

2,347

Marc Stevens!'®, Pierre Karpman ~and Thomas Peyrin*®

! Centrum Wiskunde & Informatica, The Netherlands
2 Inria, France
3 Ecole polytechnique, France
* Nanyang Technological University, Singapore

marc.stevens@cwi.nl, pierre.karpman@inria.fr, thomas.peyrin@ntu.edu.sg

Abstract. This article presents an explicit freestart colliding pair for SHA-1, 7.e. a colli-
sion for its internal compression function. This is the first practical break of the full SHA-1,
reaching all 80 out of 80 steps. Only 10 days of computation on a 64-GPU cluster were
necessary to perform this attack, for a cost of approximately 2°7-° calls to the compression
function of SHA-1. This work builds on a continuous series of cryptanalytic advancements
on SHA-1 since the theoretical collision attack breakthrough of 2005. In particular, we reuse
the recent work on 76-step SHA-1 of Karpman et al. from CRYPTO 2015 that introduced
an efficient framework to implement (freestart) collisions on GPUs; we extend it by incorpo-
rating more sophisticated accelerating techniques such as boomerangs. We also rely on the
results of Stevens from EUROCRYPT 2013 to obtain optimal attack conditions; using these
techniques required further refinements for this work.

http://ia.cr/2015/967

CRYPTO
2017

We have broken SHA-1 in practice. Collision attack: same hashes

This industry cryptographic hash function
standard is used for digital signatures and file
integrity verification, and protects a wide
spectrum of digital assets, including credit card 'B'}
transactions, electronic documents, open-source

software repositories and software updates. Sha-T

It is now practically possible to craft two colliding Good doc
PDF files and obtain a SHA-1 digital signature on
the first PDF file which can also be abused as a
valid signature on the second PDF file.

For example, by crafting the two colliding PDF files @ -B »
as two rental agreements with different rent, it is ><

possible to trick someone to create a valid Sha-1
signature for a high-rent contract by having him
or her sign a low-rent contract.

Bad doc

Infographic | Paper

https://shattered.it

EUROCRYPT
2019

From Collisions to Chosen-Prefix Collisions
Application to Full SHA-1

Gaétan Leurent! and Thomas Peyrin??

! Inria, France
* Nanyang Technological University, Singapore
3 Temasek Laboratories, Singapore

gaetan.leurent@inria.fr, thomas.peyrin@ntu.edu.sg

Abstract. A chosen-prefix collision attack is a stronger variant of a
collision attack, where an arbitrary pair of challenge prefixes are turned
into a collision. Chosen-prefix collisions are usually significantly harder
to produce than (identical-prefix) collisions, but the practical impact of
such an attack is much larger. While many cryptographic constructions
rely on collision-resistance for their security proofs, collision attacks are
hard to turn into a break of concrete protocols, because the adversary has
limited control over the colliding messages. On the other hand, chosen-

https://who.paris.inria.fr/Gaetan.Leurent/files/SHA1_EC19.pdf

(2 SHA-1 is a Shambles .

We have computed the very first chosen-prefix collision for SHA-1. In a nutshell, this means a complete
and practical break of the SHA-1 hash function, with dangerous practical implications if you are still using
this hash function. To put it in another way: all attacks that are practical on MD5 are now also practical on
SHA-1.

Check our paper here for more details. Slides from RWC are also available.

Our Contributions

Complexity Improvements

We have significantly improved the complexity of SHA-1 attacks, with a speedup factor around 10. More
precisely, we have reduced the cost of a collision attack from 2647 t5 2612 and the cost of a chosen-prefix
collision attack from 2871 to 2634 (on a GTX 970 GPU).

Record Computation

We implemented the entire chosen-prefix collision attack with those improvements. This attack is extremely
technical, contains many details, various steps, and requires a lot of engineering work. In order to perform
this computation with a small academic budget, we rented cheap gaming or mining GPUs from
GPUserversrental, rather that the datacenter-grade hardware used by big cloud providers. We have
successfully run the computation during two months last summer, using 900 GPUs (Nvidia GTX 1060).

As a side result, this shows that it now costs less than 100k USD to break cryptography with a security level
of 64 bits (i.e. to compute obt operations of symmetric cryptography).

Real World
Crypto
2020

https://sha-mbles.github.io

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

. Output Security Strengths in Bits
Function :
Size Collision Preimage 2nd Preimage

SHA-1 160 <80 160 160— L (M)
SHA-224 224 112 224 min(224, 256—L(M))
SHA-512/224 224 112 224 224
SHA-256 256 128 256 256—-L(M)
SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512—L(M)
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512
SHAKE128 d min(d/2, 128) | >min(d, 128) min(d, 128)
SHAKE256 d min(d/2,256) | >min(d, 256) min(d, 256)

Table 4: Security strengths of the SHA-1, SHA-2, and SHA-3 functions

Que faut-il utiliser ?

MD5 et SHA-1 sont désuets

& co compromis raisonnable

SHA-3 pour le futur ? reste a le tester...

Codes HMAC

HMAC : du hachage au MAC

Principe : transformer toute fonction de
hachage de qualité cryptographique en un code
d’authentification de message (MAC).

HMAC-MD5
HMAC-SHA-1

HMAC-SHA256

FIPS PUB 198-1

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

The Keyed-Hash Message Authentication Code
(HMAC)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Table 1: The HMAC Algorithm

STEPS STEP-BY-STEP DESCRIPTION

Step 1 If the length of K = B: set Ky = K. Go to step 4.

Step 2 | If the length of K > B: hash K to obtain an L byte string, then append (B-L)
zeros to create a B-byte string K (1.€., Ko = H(X) || 00...00). Go to step 4.

Step 3 | If the length of K < B: append zeros to the end of K to create a B-byte string K
(e.g., 1if K 1s 20 bytes in length and B = 64, then K will be appended with 44
zero bytes x°00°).

Step 4 | Exclusive-Or K with ipad to produce a B-byte string: Ky @ ipad.

Step 5 | Append the stream of data 'text' to the string resulting from step 4:
(Ko @ ipad) || text.

Step 6 | Apply H to the stream generated in step 5: H((Ky @ ipad) || text).

Step 7 | Exclusive-Or K, with opad: Ky ® opad.

Step 8§ | Append the result from step 6 to step 7:
(Ko D@ opad) || H((Ky @ ipad) || text).

Step 9 | Apply H to the result from step 8:

H((Ko @ opad)|| H(Ko © ipad) || text)).

Steps 1-3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Determine K,

|

K, © ipad

|

(K, @ ipad) || text

|

H((K, ® ipad) || text)

4

K, © opad

I

(K, ® opad) || H (K, ® ipad) || text)

|

H((K, © opad) || H(K,® ipad) || text))

Figure 1: Hlustration of the HMAC Construction

2.3

HMAC Parameters and Symbols

HMAC uses the following parameters:

opad

text

X ‘N’
bits.

Block size (in bytes) of the input to the Appre
An Approved hash function.

Inner pad; the byte x‘36’ repeated B times.
Secret key shared between the originator and
The key K after any necessary pre-processing
Block size (in bytes) of the output of the App
Outer pad; the byte x‘5¢’ repeated B times.

The data on which the HMAC 1is calculated;
The length of text is n bits, where 0 < n < 2° -

Hexadecimal notation, where each symbol in

Concatenation.

Exclusive-Or operation.

Pause exercice

Cette histoire de HMAC semble bien compliqué
a Alice, qui préfere utiliser MD5(KIM) pour le
controle d'intégrité de ses messages.

Pourquoi est-ce une tres mauvaise idée ?

Keying Hash Functions for Message Authentication

MIHIR BELLARE* RAN CANETTI! Huco KRAWCZYK?

June 1996

Abstract

The use of cryptographic hash functions like MD5 or SHA for message authentication has
become a standard approach in many Internet applications and protocols. Though very easy to
implement, these mechanisms are usually based on ad hoc techniques that lack a sound security
analysis.

We present new constructions of message authentication schemes based on a cryptographic
hash function. Our schemes, NMAC and HMAC, are proven to be secure as long as the un-
derlying hash function has some reasonable cryptographic strengths. Moreover we show, in a
quantitative way, that the schemes retain almost all the security of the underlying hash function.
In addition our schemes are efficient and practical. Their performance is essentially that of the
underlying hash function. Moreover they use the hash function (or its compression function) as
a black box, so that widely available library code or hardware can be used to implement them
in a simple way, and replaceability of the underlying hash function is easily supported.

http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

New Proots for NMAC and HMAC:

Security without Collision-Resistance

MIHIR BELLARE®

April 2014

Abstract

HMAC was proved in [4] to be a PRF assuming that (1) the underlying compression function
is a PRF, and (2) the iterated hash function is weakly collision-resistant. However, subsequent
attacks showed that assumption (2) is false for MD5 and SHA-1, removing the proof-based
support for HMAC in these cases. This paper proves that HMAC is a PRF under the sole
assumption that the compression function is a PRF. This recovers a proof based guarantee since
no known attacks compromise the pseudorandomness of the compression function, and it also
helps explain the resistance to attack that HMAC has shown even when implemented with hash
functions whose (weak) collision resistance is compromised. We also show that an even weaker-
than-PRF condition on the compression function, namely that it is a privacy-preserving MAC,
suffices to establish HMAC is a secure MAC as long as the hash function meets the very weak
requirement of being computationally almost universal, where again the value lies in the fact
that known attacks do not invalidate the assumptions made.

http://eprint.iacr.org/2006/043.pdf

