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Discover quantum computing through the
programming of quantum circuits

Différences between quantum/classical algorithms
- qubit, quantum gates, quantum circuits vs. bit, logic gates, Boolean circuits
- quantum specificities (peculiarities?): superposition, interference, entanglement, etc.

. programming elements in Qiskit (Python notebook)
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Cultural aspects: promises and challenges
of quantum computing
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Practical work to be carried out on a
bo 4. 4. computer, in Qiskit
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Promises and challenges of quantum computing

Quantum computing: differences from the classical model
Qubit, quantum gates, quantum circuits. Mathematical basics.
Superposition. Entanglement. ‘Destructive’ interference

The Bernstein-Vazirani problem and its quantum algorithm

Grover's algorithm: Polynomial acceleration but... it would be one of the most
useful algorithms in practice

Impact of quantum computing on today's and tomorrow's computing

Conclusion and recommended reading



1. Promises and challenges of quantum computing

* In the early 1980s, several scientists questioned the use of quantum processes for computing.

* Richard Feynman (Nobel Prize winner in physics, famous for his research but also for his
teaching), ‘Simulating physics with computers. International Journal of Theoretical Physics,
1931:

‘Can you do it with a new kind of computer — a quantum computer? Now it turns out, as far
as I can tell, that you can simulate this with a quantum system, with quantum computer
elements. It's not a Turing machine, but a machine of a different kind.

* David Deutsch. ‘Quantum theory, the Church-Turing principle and the universal quantum
computer”, 1935.
Formalises the concept of the quantum computer and raises the question of advantages in
terms of computing speed (quantum versus classical complexity). First surprising algorithms.



1. Promises and challenges of quantum computing

Quantum computer: computes the same things as a classical computer, while potentially being
more efficient (time complexity) for certain calculations.

1992-1997

* E. Bernstein et U. Vazirani. (Polynomial) speed-up for a specific problem... see next.
* L. Grover. Search for a value among N in time O(\/N ) — classical algorithms need ®(/N) time.

* D. Simons. Exponential speed-up for another problem: compute the period s of a function
1:10,1}" — {0,1}"suchthat Vx # y, f(x) = f(y) = x @ y = 5. The problem is artificial, but...

* P. Shor uses some ideas to décomposé a given N in prime factors, in poly time with respect to

log N. Computes the order r of a number g, i.e., the minimum rs.t. a” = 1 mod N.
We do not know how to do this today with a conventional computer. If it were doable, many
cryptographic protocols would become easy to break.
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If we had quantum computers...

Some calculations would be done exponentially faster than on conventional machines (but no, we would not
solve NP-hard problems in poly time). The cryptography of credit cards and other devices would have to be
completely redesigned!

Quantum communication and cryptography: the most advanced field (but we won't talk about it much).

Is this doable ?

* S. Haroche, J.-M. Raimond. Quantum computing: dream or nightmare? Physics Today, 49(8):51-54, 1996.
Decoherence, errors inherent in quantum phenomena. Quantum computer: “The computer scientist’s dream
[but] the experimenter’s nightmare.”

* P. Shor (the same): quantum error-correcting codes. In theory, we can move forward.

* In practice? Shor's algorithm was implemented in 2021 to factor the number 21. Apparently, it gave 3 X 7. No
imminent threat to cryptography...

* Announcements of ‘quantum supremacy’ for specific problems... Debatable.

* Let's stay calm, the future will tell. There are many obstacles to overcome. But it's worth looking into!
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NISQ : Noisy Intermediate-Scale Quantum

The current state of quantum computing

W “ﬂW’svdfl‘ | "'tMl\

Image Google, Quantum Al Lab, Santa Barbara, USA

Intermediate-scale: a few dozen qubits
NoOISy: no error correction

Sycamore (Google), 53 qubits aligned along a 2D
orid. The entanglement of a subit is possible
with its neighbours in the grid. Circuits with
dozens of gates, with measurement at the end.

Heron (IBM), 156 qubits, 2D grid

Pasqual: completely different quantum
processor, based on ‘quantum annealing’



Some companies, in France and worldwide

France : strong compétences in physics (S. Haroche, A Aspect and students)
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2. Quantum computing — qubit, superposition

Here: computation with quantum circuits. The model is universal. as It’s
not the only universal quantum comptine model, see e.g., the PhD thesis of
Arthur Braida (U. Orléans-LIFO/Atos-Eviden) on quantum annealing.

e qubit: superposition of |0) and | 1). It’s a 2-dimensional vector!
al0y+f|1) with a,peC suchthat |a|*+|f]* =1

* Superposition is a quantum phenomenon systematically exploited in
quantum algorithms, through quantum states such as

0)+11) 10)=11)

V2 V2

[F. Magniez, exposé College
de France]




2. Quantum computing — qubit, measurement

(a’ﬁ)

\a\‘z 0) on mesure () .
g a|0) + 3 1) < ......... @

15)2 1) on mesure 1

The measurement of a qubit will output O or 1 with the above probabilités.
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2. Quantum computing — circuits, gates

Register of n qubits, initially all set to |0). This gives N = 2" possibilities, after
measurement.

Gates : transformations U : C'%!1" — Ct%!1)" unitaires, i.e. preservation of the norm +

linearity: U (a | @) + Blw)) = aU| @) + pU | w)

Jo —t

» sequential composition: matrix product a1 B i | =

» parallel composition: tensor product

[ x) ® |y) = |xy)

¥O0 w1l

N.B. Matrices of size 2" with complex coefficients. By linearity, it suffices to know the

behaviour for each boolean bitstring | x) = | xx,...x, ), with boolean x..




Mathematical background and Dirac’s notation

“Complicated but not difficult”; not exactly intuitive...

An n-qubits register corresponds to a vector of

dimension N = 2", with complex coefficients, of -
norm 1. R el aner
. 1 0 e
One qubit: [0) = 1) = .
q | > [O:| ‘ > [1] i eI ul |
L J.::'.ll.o\--r«'l a
|0) +]1) V2
Example: —
\/5 s

V2

quora.com
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http://quora.com

More qubits — Dirac’s notation

(or bra-ket)

Parallel composition: tensor product.

1 0 0 Produit tensorielA ®Ede
1 0 1 1 deux matrices de taille
|01>= ‘O>®‘1>= ® — — mXnetpXqg:une matrice
0 1 [O] 0 de taille mp X nqg
0 0
I aB - a,B

States of the form |x) = | x,x,...x,) withx; € {0,1} provide a basis  *®%=

for the vector space. Any other states can be written as

@) = Z a,|x), with a. € C and Z la |” =1
xe€{0,1}" \ x€{0,1}"

a,B - a, B

m mn




Dirac’s notation — continued

Example (Bell state) :
1

V2
[00)—T1T) _ [ 0
V2 ’
V2

00 ..

.00)

11...

14

0
0
<:> : 272,
0
0
( 8\
0
10) — | .
1
0/

00. .

11. ..

01)

11)

An Introduction to Quantum
Computing, P. Kaye, R. Laflamme, M. Mosca

=




Gates. Sequence: matrix product

X H
gz — X — H —
(NOT gate) (Hadamard)
[0) +[1)
‘O> — ‘1) 10) >
\/E 0 |
[1) = |0) 1y 101D HX |0 = H| 1) = 19 =11
V2 V2
. i 1
ol 2 )l 2

B

15

0
1
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| xy) = [x)|x €

Gates — more qubits

sequential composition: matrix product

CX
(Controlled-NOT) ,
Matrix:
101) > |01) O 1 0
0O 0 O
|10 — | 11) 0 0 1
| 11) — | 10)

16
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IBM (2024)

é% Supraconducting qubits, microwave-
impulsions gates

Quantum volume: 512 Small set of quantum gates!

At 156 qubits, Heron is an Eagle-sized upgrade to Egret that pulls in substantial *2 qubits : CZ (| 11> - — | .11>» the
Innovations in signal delivery that were previously deployed in Osprey. The signals others stay identical autres inchanges)
required to enable the fast, high-fidelity two-qubit and single-qubit control are * 1 qubit: X, SX,RZ
delivered with high-density flex cabling. Connectivity:
e \iew avallable Heron processors 7 00:0:0x0:0x0:0:0:0:0x0:0x0:0x0
O @] 0 O
_ . .l!l.lél.l!l.lsl.lel.ﬂs ‘l’l.ls
e Native gates and operations: cz, id, delay, measure, reset, rz, sx, X, o e ® ®
QPP PEPrPEPEP=PrPrP=PP=P=P=P
if else, for loop, switch case o i i i
.I’l.l.l.l!..l.l.l’l.-.l.lel.-.
? : 1 2
0 Revisions .I‘-.I;I.l.l.lgl.l.l.lgl.l.l.lg
.I’l.l.l.l’l.l.l..’l.-.l.-’l.-.
T s 1 $
r2 (July 2024) This is a revision of the original Heron processor. The chip has been """3"""'3"""'3"""'3
redesigned to include 156 qubits in a heavy-hexagonal lattice. While continuing to 01020162010 0:62020:0x0:0:010x0
make use of the innovations of the original Heron processors, it also introduces a
new TLS mitigation feature that controls the TLS environment of the chip, thereby https://quantum.cloud.ibm.com/computers?

Improving coherence and stability across the whole chip. processorType-Heron&system=ibm_pittsburgh



2. From classical to quantum computing (compatibilit¢)

Every classical computation of a boolean function
1:4{0,1}" — {0,1}"™ can be simulated by a quantum
circuit Uy of similar size, on n + m qubits, such that =% o

| x,y) = |x,y @ f(x)) Us
— Y ydf(a)—

(A bit informal, some uniformity requirements hidden under the carpet.)

N.B. This boils down to programming with very basic tools, by explicitely
constructing the circuit...

18



2. Quantum computing — “parallelism”

ol —— W

Most quantum algorithms work on the following
principle:

* create a relevant superposition of qubits from

100...0)

* perform a classical calculation in parallel on the
superposition of inputs;

* perform a relevant quantum transformation;

* observe the result using measurements.

19



2. Quantum computing — interference

in particular, destructive interférences

Interference: a combination of two waves.
See Young's double-slit experiment:
- “constructive” and “destructive”
- interference.

Fentes de Young - Wikipedia

Exercise. Analyse the result of two consecutive H o B
[0.1)

gates: compute H(H|0)) and H(H|1)).

20



2. Quantum entanglement

in French: « intrication » or « enchevétrement »

Bell state: 00) + 111) A circuit producing N e
\/5 this state: o .

. Any of the two qubits has a probability > to be measured 0, same for 1.

* Assume that we have measured the first qubit, obtaining 0. What happens if we
measure the 2nd qubit? Conclude that the properties of the two qubits are correlated.

Disturbing, because we can separate the two qubits far apart, and they remain
entangled... Einstein called this a “spooky action at a distance”.
Bohr - Einstein controversy; Nobel prize 2022 J. Clauser, Alain Aspect, and A. Zeiliger.

21



3. Bernstein-Vazirani problem/algorithm

Quite surprising (quantum advantage), yet (relatively) easy to understand

The problem Exercise.

* Input: a functionf: {0,1}" — {0,1}, as a circuit

Propose a classical algorithm to solve

* Promise: there exists s € {0,1}" such that the problem. How many calls tOde
Jlx)=x-s you need?
* Qutput: find s

Reminder: given x = x;x,---x, and s = §,5,-:+5, we A 51 X151
: X S Xy S

denote by x - s their scalar product: 2 2| 5 xOR 2792

A3 3 X3 * 53

X S=Xx-85Dx%-5,D---Dx, 5, X4 Sy Xg Sy

22



3. Bernstein-Vazirani problem/algorithm

Quantum algorithm: a unique call to f

f(x) = x - s for some « hidden » s € {0,1}" . T
1. Constructfirst U, : |xb) — |x)|b X
2. Replace b with _ . We obtain:
P 2 — Y yBf(x)—
0)—1|1 0)—|1
PR AL SRS A TR b
V2 V2 i
3. Apply H gates on the first n qubits, at the very o T
beginning. What do we obtain, without measuring? x, ——o—

4. Apply H gates on the first n qubits, at the very end. g
Measure them and show that we obtain precisely s.

23



3. Bernstein-Vazirani problem/algorithm

f(x) = x - s for some « hidden » s € {0,1}"

1. Construct first Uy : |xb) — |x) | b @ f(x)) v ——a—
[0) — | 1)

2. Replace b with . We obtain: b

\(»—\1?5 [0) — | 1) =0l
g ‘x>< V2 )é(_l)ﬂm”( V2 )
2 2 g

3. Apply H gates on the first n qubits, at the very
beginning. What do we obtain, without measuring?

4. Apply H gates on the first n qubits, at the very end.
Measure them and show that we obtain precisely s.

24



3. Bernstein-Vazirani problem/algorithm

f(x) = x - s for some « hidden » s € {0,1}"

1. Construct first Uy : |xb) — |x) | b @ f(x)) —— —_—

0)—11 E _
2. Replace b with 0)— >.We obtain: i

2
" m( \(»\E 1>> . (_l)f(x)‘x>< \(»\E 1>>

3. Apply H gates on the first n qubits, at the very
beginning. What do we obtain, without -+ H '
measuring? |

4. Apply H gates on the first n qubits, at the very end.

Measure them and show that we obtain precisely s.

25



3. Bernstein-Vazirani problem/algorithm

"R 5
f(x) = x - s for some « hidden » s € {0,1}" B
1. Construct first Uy : |xb) — |x) | b @ f(x)) B—
10y 1) | S
2. Replace b with . We obtain: ;
2
0)—]1 0)— |1 . .
U, 1x) [0) — | 1) (1)) [0) — | 1) =
/ . .
V2 V2 s §
a1 —H g §
3. Apply H gates on the first n qubits, at the very . I | |

beginning. What do we obtain, without measuring? , ,

4. Apply H gates on the first n qubits, at the very end.

Measure them and show that we obtain precisely s.
Mesure : 011

The output is s, with probability 1!

26



3. Proof of the Bernstein-Vazirani algorithm

An almost combinatorial proof, no heavy calculations

.m—1 impg
Lemma 1: i |
qi1 — H , , H
g2 —H . . - m—
o HE 00—

- H — H — =Identité - v0 w1 W2

27



3. Proof of the Bernstein-Vazirani algorithm

An almost combinatorial proof, no heavy calculations

do — H 2 5 H

LLemma 2:

d1 — H H

go — H —9p—— H — do —Gg— q3—.—|-| — H—H— — H —H

diy — H — _H - CI1 —r
a0 i g
At the end, the circuit acts as if we reversed all CNOT 1 X
gates, knowing that the last qubitis set to | 1) a: %) — "
3 v0 w1 W2

Sortie : 011
28



4. Grover’s algorithm

[t is a probabilistic algorithm: it finds the solution with a probability of at least 2/3.
Standard amplification techniques can bring it as close to 1 as desired.

SAT (satishiability) problem, in classical terms: even if fis a known Boolean function, we cannot
do better than, roughly, 2" time, under some complexity assumptions.

Grover would be one of the most useful algorithms, providing a (polynomial) speed-up for
many classical algorithms. More details during the last lecture.

29



4. Grover’s algorithm - basic tools

X
7 Reminder from previous lectures
/ * For any boolean function f, we can build
yDf (z)+H— Us: |x)[y) = [x) |y @ f(x)
0)—|1
. Wedenote | — ) = 0) — 11
\V/2
—1)/®
. (=1 * Bysetting y = | — ), we obtain as output
Uy (=1 x| -)
yDbf (:E) ‘ O>\/__‘ D e This new circuit is denoted Z.
2

Oracle Zf
30



4. Grover’s algorithm - basic tools

yDf(z

)

(=19 x)

[0) —11)

)

Oracle Zf

Simplifying hypothesis. Assume that our
functionf: {0,1}" — {0,1} is such that there
exists a unique x; satisfying f(x,) = 1.

(We'll eventually solve the general case, don'’t
WOTrTY.)

Exercise. What is the state of Zfif we add an H

gate on each of the first n input qubits?

31



4. Algorithme de Grover — premiére observation

1

Images : https:/frwikipedia.org/wiki/Algorithme_de_Grover
2 I I I I I I I I Symplifying hypothesis (reminder). For our function
f:10,1}" = {0,1 }there exists a unique x; such that f(x;) = 1.

04

Initial state after the H gates

Exercise. What is the state of Zif we add an H gate on each of

the first n input qubits?

o I I I I I I I * Up: the state right after the H gates (amplitudes)

I * Down: output state, the amplitude of x; has changed its sign

[t >

04

Output
32


https://fr.wikipedia.org/wiki/Algorithme_de_Grover

08

06

04

02

o

0.2

04

0.8

0,6

04

0,2

0,2

04

1 2 3 4 5 6 7 B

Initial state after the H gates

1 2 3 - 5 7 8

Symmetry around the average

0.8

0,6

04

0,2

0,2

04

08

086

04

0.2

04

1 2 3 = 5 I 7 8

State after the Z,circuit

6 7 8

New state after all these steps
33

4. Grover’s algorithm —

symmetry w.r.t this average

Grover’s operator

* Intuition: as if we compute the
average of the amplitudes, and
we apply a symmetry w.r.t this
average

* We'll detail the implementation
and the proofs



08

06

04

0,2

0,2

04

1 2 3 < 5

State after H gates and one Z;

1

0.8

0,6

04

0,2

0

0,2

04

08
06

04

I I )
0

7 8
0.2

04

H B EEE - B

State after two Grover operator

State after one Grover operator

34

4. Grover’s algorithm
—repeate

... a well-chose number of times

* In the example we measure x;,
with probability larger than 90 %

We still need to:
* Detail the implementation

* Transform this small example
into an actual proof



4. Grover’s algorithm

GGrover diffusion operator

(‘)n> <()n‘ e I’n [ ] vy o) SRS SR /74___

0) -4 H®" H®n )
U

Repeat O(vV N) times
https:/frwikipedia.org/wiki/Algorithme_de_Grover
General scheme. Here U , is just another notation for Uy

Grover’s diffusion operator performs this “mirror around the average”. Its implementation is
fairly easy:

H®"Z,xH®"

35



Would you take some more maths?

"bra” notation and projections
Recall that a state |y) = |a,a,...a,) represents a vector (1-column matrix).

We denote by (| = (a;a,...a, | its conjugate transpose: the column is turned into a
row. For each coordinate a; we should take its complex conjugate... but since we deal

with real numbers only, its conjugate is still a..

(0" | represents (00...0|, with n zeros, i.e. the matrix [10...0], with one row and 2"
columns.

The scalar product of vectors | ¢) and |y) is also denoted (@ | y); matrix product of
(¢| and |y).

Projector operator: |y)(y|. It’s the sensorsproduct of the two matrices (y| and |y).



The scalar product of real vectors | ¢) and |w) equals (¢ | X |y), denoted (@ |y).

Projection operator: |y)(y|. The tensor product of the two matrices |y) ® (y|.

Properties of the sensor product :

* (Jy) v |e) = lw)(w|e@)) is the projection of vector | @) on |y)

e Given two matrices A, B of size N X N,

A(ly){w|)B=Aly)) @ (w|B)

Exercise 1. Write the matrix of |0")(0"|, then the one of 2 |0")(0"| — I .

Exercise 2. Show that 2|0")(0"| — I, corresponds to the circuit Z,, of function OR,..

Exercise 3. Show that H®"(2 | 0")(0" | — I )H®" =2 | u){u| — I , where u = H®" | 0").

37



4. Grover’s algorithm : the proof

Grover diffusion operator

o N
' s

()> N [g®n H®n ) |()”> <()”| — I, H®n (— - - —/7/\:

U, We denote A; = {x,} and

\ - Ag={x € {0,1}": f(x) = 0}

Repeat O(v N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover

JISN For any set of boolean vectors A of size n let

\ // Observe that vectors |A,) and |A,) are

orthogonals.

John Watrous, IBM, YouTube video

38



4. Grover’s algorithm : the proof

Grover diffusion operator

() > /T SO

- — . Let |u) = H®"|0"), the “uniform superposition”
IIBH' 2 |()n> <()n| o ]n II:E':'” R —/74:
U, vector
i . d 1
Repeat O(v/N) times ‘ M) — Z ‘ X)
https:/frwikipedia.org/wiki/Algorithme_de_Grover \ﬁv xe{0,1}"
uy =——=( Y lx)+ D 1x))
p N Xo€EA X|EA
/ \
,/'// \\
\ u)

| u) is a lainera combination of |A,) and |A;)
John Watrous, IBM

39



()> /m H A1

4. Grover’s algorithm : the proof

Grover diffusion operator

o N

-~

https:/frwikipedia.org/wiki/Algorithme_de_Grover

I I X1

2 [0™) (07| — I,

I I 24

n

-

Repeat O(v N) times

|Aq)

2w
f g \
- \

L 1 //"',—’ | I A 0 }
- :
\ }
\
Ly | P >
John Watrous, IBM

Zilw) = ), a (1) |x) -

Understanding Z;| y) : symmetry around |A).

‘W) — Z axo‘x0>+ Z axl‘x1>

Xo€Ag

Xo€Ay

X|EA,

) Z O‘xl(_l)f(xl)|x1>

X|EA

th”) = Z ax()‘x0> o Z axl‘x1>

40
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X1€EA,



4. Grover’s algorithm : the proof

0) —/n

Grover diffusion operator UnderStanding H bn ZOR H Dn ‘ l/f): Symmetry
Y 5 HEP 2[00 )(0% — L, BB s L d — al‘()und ‘ l/t>.
Repeat O(v/N) times
—_ n n
https:/frwikipedia.org/wiki/Algorithme_de_Grover ZOR =2 ‘ 0 ><O | — 1

H®"Z, HO®" |y) = H®"(2|0")(0" | — DH®"
= 2H®"(|0"){(0" | ) H®" — HO"[H®"
=2 uyu| -1

We used the fact that HY" | 0") = | u)

John Watrous, IBM

41



4. Grover’s algorithm : the proof

Grover diffusion operator

o N
4 S

(’)> a2 58 [[:ﬁg::n I[:i;’::n. 2 |(')"> <(’)‘”| — ]_n H:Z‘;i:'n L

-

Repeat O(v N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

42

Understanding the Grover diffusion operator:
(H"ZorH®"MZe | )

1. Symmetry around |A)
2. Symmetry around | u)

Equivalent to a rotation of vector |y) of angle 26,
where @ is the angle between vectors |u) and | A)



4. Grover’s algorithm : the proof

e 1A
/ _- N HE ZogHE W) .
/ \ /N Understanding the Grover
- e , | diffusion operator:
: B ~— = EBn @I’l
\\ ~ (H¥"ZorH®") Ze | w)
1. On applique Z; 2. Puis H®"Z,, ,H®" 1. Symmetry around ‘ AO>
2 Glw) Pt

2. Symmetry around | u)

—
£~
| \\

Equivalent to a rotation of vector

| y) of angle 26, where @ is the angle
between vectors |u) and | A)

3. La Combinaison deS deux prOdUit... Une rotation d’angle 29
43



4. Grover’s algorithm : choose the number of itérations

Grover diffusion operator 1. We start from Yo = ‘ I/l>, of angle 0 with ‘AO>
() ¢ 58 Xn g Xn 2 P ] = ]n Rn ; o B e d _— . .
T B LipACA £ 7 5. After ¢ itérations, the angle becomes (27 + 1)0 | A,)
1) —{H 3
Repeat O(v/N) times 3. We aim to measure A, thus we want the angle to
https:/frwikipedia.org/wiki/Algorithme_de_Grover become FOUghly 900; or 77/ 2
1 VN -1
|u) = | Ay | A | Ap)

VN VN

|u) = sin(0) |A; | + cos(0) | Ap)

1
Thus sin(f) = , and for large N, 6 ~ :
VN VN

]Z. ’ [
Une rotation d’angle 26 N=1281=8 Therefore, we choose 1 = LZ\/N | itérations

4.4



4. Grover’s algorithm — the circuit

Grover’s circuit, n + 1 qubits

Grover diffusion operator

o N

0) o Hem e HE 2007 (07— Lo ae o A= 0 Apply HO™: H gates on the first n qubits

. ¥

Repeat ()(\/T) times

2. Apply X and H on qubitn + 1

JT
https:/frwikipedia.org/wiki/Algorithme_de_Grover 3. repeat [ = LZ\/N J times the Grover operator:
GR|u)
\ 5. add H®"
)
| Ao}
, = 6. add Zp
l Ze|) / @n
7. add H
Une rotation d’angle 260 = 128,1 =8

8. measure the 7 first

For the implementation of Z,and Z, we use circuits Usand U, with the last qubit set to | — ).

45



4. Grover’s algorithm — the circuit

Grover diffusion operator

- e = Theorem. Grover’s algorithm measures x; with
‘()) -_71’_’._ [[f;‘?u B [[fij:n 2 |()n> <()n| B [n I[:.:r_:,n e _/—7/\:

SRS g - SN fip - probability at least 1 — N’ where N = 2",

Repeat O(v/ N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover Extensions

, ( o . .
Grover’s circuit * If fhas an arbitrary number of solutions, choose the
1. Apply H®" on the first n qubits, set the last number 7 of iterations uniformely at random in

oneto | — ) {1,...,m\/N/4}. Success probability > 40 %.

T .
2. repeatt = Lz\m | times the Grover One can do better, cf. [John Watrous, YouTubel].

operator: * Optimisation:f: {0,1}" — N, compute x s.t. f(x) is

maximum: méme complexite, [Diirr, Hagyer '97].

3. add Z,then H " then Z,, then H®"

2n/2

* Many applications but gates! Why is this an issue?

4. Measure the first n qubits 4



4. Grover’s algorithm

Grover diffusion operator

T e oL e - Theorem. Grover’s algorithm measures x; with

/

— 7 B

\ - — probability at least 1 — —, where N = 2".
Repeat O(v/'N) times N

https:/frwikipedia.org/wiki/Algorithme_de_Grover

Exercise 2. Now let us consider that the input function
has no particular restrictions.

Exercise 1.

1. Describe completely Grover’s algorithm, in

- | ical lgorithm, which
the “simplified” case (unique solution). . Recall the mixed classical/quantum algorithm, whic

finds a solution x; such thatf(x;) = 1 with

2. Apply it to a function with 2 bits as input. probability > 40%, if such a solution exists.

Analyze the change in amplitudes after each
step. What is the probabi]ity of ﬁndlng the 2. MOdlfy the algorithm to obtain a solution with
solution? probability at least 1 — 1/N. Specity its time

3. Same question for a 1-bit function. complexity.
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d’ORLEANS

5. The impact of quantum computing

in the short and medium term

Objective: explore the impact of quantum programming tools on modern computing and
delve deeper into the details of a “mixed” algorithm that would sometimes use quantum code.

A. Shor's algorithm: factorisation and discrete logarithm. Consequences for cryptography,
‘post-quantum’ cryptography.

B. Quantum key exchange: BB84 algorithm.

C. Tools for mixed classical/quantum programming: focus on Grover's algorithm, if it needed
to be adapted to applications.
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A. Shor’s algorithm | P. Shor '94]

Allows to solve, in polynomial time w.r.t.

the number of bits of the input: @ _E T _/.’4=
* Problem Factorisation(/V): find a divisor 0 —E r Wl | —o

of N, different from 1 and N, if any; 0) <{H T — A=
* The discrete logarithme modulo N: find R (7l (17 iy Ol .

Quantum subroutine in Shor's algorithm

log,(a) = xsuch that »* = a mod N.

Wikipedia, Shor’s algorithm

The “quantum” part computes, given numbers a and /N, the smallest integer r such that
a” =1 mod N. The rest is classical. Complexity O(n?) = O((log N)?).
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A. Consequence: post-quantum cryptographie

If we could efficient implement Shor’s algorithm, it
would break:

* RSA encryption protocol [Rivest, Shamir, Adelman ’:O> H . /74
771, whose security relies on the difficulty of o 7 o QFTy |
factoring a (large) number into prime factors.. o) I 7

* Diffie-Hellman key exchange protocol [Diffie, 1y —2—TpHoa |- Jra
Hellman '76], whose security relies on the difficulty of ~ Quantum subroutine in Shor's algorithm =
calculating the discrete logarithm. Wikipedia, Algorithme de Shor

Most protocols currently in use are based on these two problems...

The emergence of post-quantum cryptography, which has nothing to do with quantum physics
and offers other protocols that are resistant to this type of attack.

Examples: CRYSTALS-Kyber (keys), CRYSTALS-Dilithium (signature), based on ‘structured
Euclidean networks..
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B. Secure key exchange | Bennett-Brassard 84]

For secure key exchange, a quantum solution already exists.

Recommended reading and videos: Frédéric Magniez's lectures at the College de France,
https:/www.college-de-france.fr/chaire/tfrederic-magniez-informatique-et-sciences-

numeriques-chaire-annuelle/events

Obijective of key exchange: A and B must agree on a key (random sequence of bits).
* Assumption that A and B are properly identified (no identity theft).

* At the end of the protocol, A and B must have the shared key and must be the only ones to
possess it. [f someone has listened into the conversation between A and B, they must realise
it.

o1


https://www.college-de-france.fr/chaire/frederic-magniez-informatique-et-sciences-numeriques-chaire-annuelle/events
https://www.college-de-france.fr/chaire/frederic-magniez-informatique-et-sciences-numeriques-chaire-annuelle/events

Why BB84 ?

1. It can be presented in 20 minutes
-by simplifying it a lot...
-but without butchering it, | hope

2. It uses several properties of qubits:
* vectorial aspect (superposition, measurement)
* non-cloning theorem

3. It has already been implemented!

* qubits: photons

* optical fibre

G. Brassard
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Ist tool : measures in different bases

[Images from the talks of F. Magniez at College de We will choose two bases |0),|1)and|0'), [ 1)
France] with a rotation of 45°.
Measure and basis: a qubit can be 1)
measured in any orthogonal basis 07
1)
1), 1 \2, 0)

(O‘ ) v)

Observation: the | 0’) measured into the base

10), | 1) gives O with probability 1/2 and 1 with
probability 1/2. Same for any other
‘mismatched’ measure
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BB84 putting the details under the carpet (1)

Quantum communication from Alice to Bob.

Alice chooses a bitstring (uniformly at random), and a séquence of bases. This yields
a sequence of qubits, by interpreting each bit in the corresponding base. These qubits
are communicated to Bob.

Cle: 0 |

Base : <—I—> < ‘{* ‘{—’
Qubit —»\ T —>

Talk of F. Magniez
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BB84 putting the details under the carpet (2)

Bob chooses a sequence of bases and measures the received qubits in those bases.

Alice and Bob communicate the bases choosen by each of them.




BB84 putting the details under the carpet (3)

On average, half of the bases chosen by Alice and Bob coincide. Only these bits are
kept as keys. Conclusion: Alice and Bob agreed on half of the bits! (Well, modulo
errors, but that's not the subject of today's discussion).

What about intruders and eardropping ???

Cle: o I I 0 0O | O

| 1 | O
e m
Qubit —»\ —»/' —»‘\ \ /' 0TI
................................................. N
Base: X+ XoPr b X P XX
> | 0 | O

Talk of F. Magniez
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2nd tool: no cloning theorem

Theorem. It is impossible to duplicate an unknown

qubit.

* Informally: if we measure it, we distroy its |z/)> |z/)>
superposition (vectoriel behaviour) []

* Formally: prove it using the linearity of quantum |O> | W) > |

transformations. See 1st session of exercises.

Counterintuitive but not difficult to demonstrate, by
linearity.

S/



Consequences of no cloning on BB84

Admit that some intruder listened to Alice’s messages to Bob.

[t will be impossible for him/her to “put” the intercepted qubits back into the channel
without altering a large proportion of them. And that will be noticeable.

-7 Cle: 0 | o o 1 o I I I O
Base: <+ 0 <+ b b b XOXR X )
Qubit  —X_ | — T_u\ ~ | / 1) )
................................................. l .0)
Base : X<—I—>X<I»<I>X«I—»X<I.<I.X
Extrait exposé F. Magniez Cle: I 1 0 o I I OO I O [ O

Talk of F. Magniez

Informal, but it can be turned into proof, even if the intruder has clever strategies.
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Consequences of no cloning on BB84

Admit that Eve (Evil) listened to the secret exchanges between Alice and Bob.

Option 1. Eve mesured each qubit sent by Alice to Bob in one of the two bases, at
random, and “puts it back” in the same base.

Cle:

| 0 | 0 |
Base.: «{» X Fiﬁ <_I_, I m
S I V(S
Base : o X e X X b
> 10 0

Exercise. Compute the probability that the qubit returned by Eve is identical to the qubit sent by
Alice. Compute the probability that the bit read by Eve is equal to the one sent by Alice.

Extrait expose F. Magniez

How would Bob detect the intrusion if Eve read k qubits?
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Consequences of no cloning on BB84

Assume that Eve adopts a more sophisticated strategy.

Option 2. Eve chooses some other base (| y), | y;)), in which she measures the qubit sent

by Alice, and puts it back in this same base. Let @ be the angle of this base with the canonial
one.

Clé - 0 | 00 1 01 1 1 0
Base : *I—’X“I"“I"X“I"“I"XX“I"X
Qubit —n\T_»/T_»\\T/

Talk by F. Magniez

Talk by F. Magniez

Exercise. What is the probability that the bit read by Bob is the one sent by Alice, despite the

intrusion? What is the probability that the bit read by Eve is the one sent by Alice? How can the

intruder be detected?
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C. Grover’s algorithm in mixed algorithms

1. Introduction Consider the followin g problem from a crossword puzzle:

~r_nh (Solution - piranha)
Theorem. Grover’s

algorithm measures

You have an online dictionary with 1, 000, 000 words 1n which the words are arranged alphabetically. You could pro-

gram 1t to look for the solution to the puzzle so that 1t typically solves it after looking through 500, 000 words. It 1s

x; with probability at

very difficult to do much better than this. But that is: only if you limit yourself to a classical computer. A quantum
computer can be in multiple states at the same time and, by proper design, can carry out multiple computations simul- l east 1 _ Wh ere
’

taneously. In case the above dictionary were available on a quantum computer, 1t would be possible to carry out the N

scarch 1in only about 1, 000 steps by using the quantum search algorithm. N —_ 2n

Lov Grover, From Schriodinger’s Equation to the Quantum Search Algorithm, ArXiV 2001.

Exercise. Let's imagine that we had to implement Grover's puzzle for real. We have discussed
Grover's quantum circuit implementation at length.

1. What work would a computer scientist have to do if they only had Qiskit and a quantum
computer at their disposal?

2. How could they encode a table of integers, or even Booleans? Even if it were inefficient?
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C. Quantum RAM : principe
] w1 S[10)

To implement Grover’s algorithm with an array, | | 1) ) / R
we would need a “QRAM” to store boolean (or K N
integer) arrays X of size N = 2" and access X]i] in Xo0) Txm Xi0) | (Xa2) | [Xo)] [IXon?] [Xs0d] [Xin)
time poly(n).

i) > |1 ] X[il) w0
Moreover, we need superposed access:: ) )

1Xo0) | [1Xon) | [1X10) | (X1}

N—-1 N—-1
D, aliy = Y a;liy | XTiD) LN LN
1=0 1=0

Phalak, Chatterjee, Ghosh, Quantum Random Access Memory For
Dummies, ArX1V 2023

62



C. Quantum RAM : implémentation

] o—]

|0) ._T

) )
] [ | 10)
|1)
[1Xo0) | [1Xo2) | [[X10) | |IXa1) |
From Phalak, Chatterjee, Ghosh, Quantum Random
Access Memory For Dummies, ArXi1V 2023. [, )
)1
See also Arunachalam et al., On the robustness of
bucket brigade quantum RAM, ArXiV 2015. 0) -
ou

Implementation of a QRAM for an array of size 4. In red, the gates

activated when reading the address |01).
There is a bug in the circuit, can you find it?

63


https://arxiv.org/pdf/2305.01178
https://arxiv.org/pdf/1502.03450

6. Conclusion g

d’ORLEANS

LiEe

1. Quantum algorithms: circuits, qubits, quantum gates.

and further reading

2. Unusual way of thinking; not that complicated mathematically, after all.

3. Not too complicated: Simons’s algorithm. Finds the period of an n-to-n bits function, with a polynomial
number of calls. Exponential speed-up w.r.t. classical randomized algorithms.

4. More subtle: Shor’s algorithm for factorisation. Period estimation, (quantum) fast Fourrier transformé.

5. Quantum cryptography, “teleportation” of an unknown qubit. Entanglement, no cloning, measurement
in different bases.

Présentations by Frédéric Magniez, College de France. Books, par ex. [Kaye, Laflamme, Mosca, An
Introduction to Quantum Computing, 2007; Nielsen, Chuang. Quantum computation and quantum information.
Cambridge University Press, 2010].

Thesis of Arthur Braida (Eviden/LIFO - Univ Orléans) for adiabatic quantum computing

Lectures and lecture notes by John Watrous (IBM) on YouTube.
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7. Entanglement

Cf. Nobel prize for Alan Aspect et al.
Bell states(2 entangled qubits): what happens if we separate them by a large distance?

Well... after measuring the first one, the second one will give the same measure — even if
the delay between measurements is shorter than the time to communicate at light speed
among them.

(Serious) doubts of Einstein [Einstein, Podolsky, Rosen "35] w.r.t. Bohr’s interprétation;
the former think it contradicts the locality principle. They propose the hidden variable
theory, as if the qubits agreed on something before they were separated.

A. Aspect conducted an experiment in Orsay (with Grangier, Roger, and Dalibard)
proving that the hidden variable theory does not hold (using Bell’s inequalities).

Applications to cryptography. So-called ‘teleportation’, in the sense that an unknown
qubit can be ‘sent’ to someone else, at a distance, without duplication.
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