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Discover quantum computing through the 
programming of quantum circuits

Différences between quantum/classical algorithms 

• qubit, quantum gates, quantum circuits vs. bit, logic gates, Boolean circuits 

• quantum specificities (peculiarities?): superposition, interference, entanglement, etc. 

• programming elements in Qiskit (Python notebook)
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Cultural aspects: promises and challenges 
of quantum computing

Practical work to be carried out on a 
computer, in Qiskit



Plan
1. Promises and challenges of quantum computing 

2. Quantum computing: differences from the classical model 

3. Qubit, quantum gates, quantum circuits. Mathematical basics. 

4. Superposition. Entanglement. ‘Destructive’ interference 

5. The Bernstein-Vazirani problem and its quantum algorithm 

6. Grover's algorithm: Polynomial acceleration but… it would be one of the most 
useful algorithms in practice 

7. Impact of quantum computing on today's and tomorrow's computing 

8. Conclusion and recommended reading
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1. Promises and challenges of quantum computing

• In the early 1980s, several scientists questioned the use of quantum processes for computing. 

• Richard Feynman (Nobel Prize winner in physics, famous for his research but also for his 
teaching), ‘Simulating physics with computers.’ International Journal of Theoretical Physics, 
1981:  
‘Can you do it with a new kind of computer — a quantum computer? Now it turns out, as far 
as I can tell, that you can simulate this with a quantum system, with quantum computer 
elements. It's not a Turing machine, but a machine of a different kind.’ 

• David Deutsch. ’Quantum theory, the Church–Turing principle and the universal quantum 
computer", 1985. 
Formalises the concept of the quantum computer and raises the question of advantages in 
terms of computing speed (quantum versus classical complexity). First surprising algorithms.
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1. Promises and challenges of quantum computing
Quantum computer: computes the same things as a classical computer, while potentially being 
more efficient (time complexity) for certain calculations. 
1992-1997 

• E. Bernstein et U. Vazirani. (Polynomial) speed-up for a specific problem… see next. 

• L. Grover. Search for a value among  in time  — classical algorithms need  time. 

• D. Simons. Exponential speed-up for another problem:  compute the period  of a function 
 such that . The problem is artificial, but… 

• P. Shor uses some ideas to décomposé a given  in prime factors, in poly time with respect to  
. Computes the order  of a number , i.e., the minimum  s.t. . 

We do not know how to do this today with a conventional computer. If it were doable, many 
cryptographic protocols would become easy to break.

N O( N) Θ(N)

s
f : {0,1}n → {0,1}n ∀x ≠ y, f(x) = f(y) ⇒ x ⊕ y = s

N
log N r a r ar ≡ 1 mod N
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If we had quantum computers…
Some calculations would be done exponentially faster than on conventional machines (but no, we would not 
solve NP-hard problems in poly time). The cryptography of credit cards and other devices would have to be 
completely redesigned! 

Quantum communication and cryptography: the most advanced field (but we won't talk about it much). 

Is this doable ? 

• S. Haroche, J.-M. Raimond. Quantum computing: dream or nightmare? Physics Today, 49(8):51–54, 1996. 
Decoherence, errors inherent in quantum phenomena. Quantum computer: “The computer scientist’s dream 
[but] the experimenter’s nightmare.” 

• P. Shor (the same): quantum error-correcting codes. In theory, we can move forward. 

• In practice? Shor's algorithm was implemented in 2021 to factor the number . Apparently, it gave . No 
imminent threat to cryptography... 

• Announcements of ‘quantum supremacy’ for specific problems... Debatable. 

• Let's stay calm, the future will tell. There are many obstacles to overcome. But it's worth looking into!

21 3 × 7
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• Intermediate-scale: a few dozen qubits 

• Noisy: no error correction 

• Sycamore (Google), 53 qubits aligned along a 2D 
grid. The entanglement of a subit is possible 
with its neighbours in the grid. Circuits with 
dozens of gates, with measurement at the end. 

• Heron (IBM), 156 qubits, 2D grid 

• Pasqual: completely different quantum 
processor, based on ‘quantum annealing’ 
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Image Google, Quantum AI Lab, Santa Barbara, USA

NISQ : Noisy Intermediate-Scale Quantum
The current state of quantum computing
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Some companies, in France and worldwide
France : strong compétences in physics (S. Haroche, A Aspect and students)

emulation



2. Quantum computing — qubit, superposition
Here: computation with quantum circuits. The model is universal. as It’s 
not the only universal quantum comptine model, see e.g., the PhD thesis of 
Arthur Braida (U. Orléans-LIFO/Atos-Eviden) on quantum annealing. 

• qubit: superposition of  and . It’s a 2-dimensional vector! 
 

• Superposition is a quantum phenomenon systematically exploited in 
quantum algorithms, through quantum states such as 
 

 or 

|0⟩ |1⟩
α |0⟩ + β |1⟩ with α, β ∈ ℂ such that |α |2 + |β |2 = 1

|0⟩ + |1⟩

2

|0⟩ − |1⟩

2
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[F. Magniez, exposé Collège 
de France]



2. Quantum computing — qubit, measurement

Exercise. Describe the possible outputs after measuring the following qubits, with 
their respective probabilités: 
 

          a.            b.           c.           d. |0⟩ |1⟩
|0⟩ + |1⟩

2

|0⟩ − |1⟩

2
10

The measurement of a qubit will output  or  with the above probabilités.0 1



2. Quantum computing — circuits, gates
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• sequential composition: matrix product 

• parallel composition: tensor product
|x⟩ ⊗ |y⟩ = |xy⟩

N.B. Matrices of size  with complex coefficients. By linearity, it suffices to know the 
behaviour for each boolean bitstring , with boolean .

2n

|x⟩ = |x1x2…xn⟩ xi

Register of  qubits, initially all set to . This gives  possibilities, after 
measurement. 

Gates : transformations , unitaires, i.e. preservation of the norm + 
linearity: 

n |0⟩ N = 2n

U : ℂ{0,1}n → ℂ{0,1}n

U (α |φ⟩ + β |ψ⟩) = αU |φ⟩ + βU |ψ⟩



Mathematical background and Dirac’s notation
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“Complicated but not difficult”; not exactly intuitive…

An -qubits register corresponds to a vector of 
dimension , with complex coefficients, of 
norm . 

One qubit : , .  

Example:  

n
N = 2n

1

|0⟩ = [1
0] |1⟩ = [0

1]
|0⟩ + |1⟩

2
=

1

2
1

2

quora.com

http://quora.com
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Parallel composition: tensor product. 

  

States of the form  with  provide a basis 
for the vector space. Any other states can be written as 

, with   and 

|01⟩ = |0⟩ ⊗ |1⟩ = [1
0] ⊗ [0

1] =
1 [0

1]
0 [0

1]
=

0
1
0
0

|x⟩ = |x1x2…xn⟩ xi ∈ {0,1}

|φ⟩ = ∑
x∈{0,1}n

αx |x⟩ αx ∈ ℂ ∑
x∈{0,1}n

|αx |2 = 1

Produit tensoriel  de 
deux matrices de taille  

 et  : une matrice 
de taille  

 

A ⊗ B

m × n p × q
mp × nq

A ⊗ B =
a11B ⋯ a1nB

⋮ ⋮
am1B ⋯ amnB

More qubits — Dirac’s notation
(or bra-ket)
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Dirac’s notation — continued

An Introduction to Quantum 
Computing, P. Kaye, R. Laflamme, M. Mosca

 

Example (Bell state) :  

 

|φ⟩ = ∑
x∈{0,1}n

αx |x⟩

|00⟩ − |11⟩

2
=

1

2

0
0

− 1

2



Gates. Sequence: matrix product 
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(NOT gate) 

 

X

|0⟩ ↦ |1⟩

|1⟩ ↦ |0⟩

 

(Hadamard) 

 

H

|0⟩ ↦
|0⟩ + |1⟩

2

|1⟩ ↦
|0⟩ − |1⟩

2
H(X |0⟩) = H |1⟩ =

|0⟩ − |1⟩

2

1

2 [1 1
1 −1] ([0 1

1 0] [1
0]) =

1

2 [1 1
1 −1] [0

1] =
1

2 [ 1
−1]Matrix : 

[0 1
1 0]

Matrix : 
1

2 [1 1
1 −1]



Gates — more qubits
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sequential composition: matrix product

 

(Controlled-NOT) 

 

 

 

CX

|00⟩ ↦ |00⟩

|01⟩ ↦ |01⟩

|10⟩ ↦ |11⟩

|11⟩ ↦ |10⟩

Matrix: 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|xy⟩ ↦ |x⟩ |x ⊕ y⟩



IBM (2024)
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Supraconducting qubits, microwave- 
impulsions gates
Small set of quantum gates!
• 2 qubits : CZ ( , the 

others stay identical autres inchangés)
• 1 qubit: X, SX, RZ 
Connectivity:

|11⟩ ↦ − |11⟩

https://quantum.cloud.ibm.com/computers?
processorType=Heron&system=ibm_pittsburgh



2. From classical to quantum computing (compatibilité)
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Every classical computation of a boolean function 
 can be simulated by a quantum 

circuit   of similar size, on  qubits, such that  
f : {0,1}n → {0,1}m

Uf n + m

|x, y⟩ ↦ |x, y ⊕ f(x)⟩

N.B. This boils down to programming with very basic tools, by explicitely 
constructing the circuit… 

(A bit informal, some uniformity requirements hidden under the carpet.) 



2. Quantum computing — “parallelism”
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Most quantum algorithms work on the following 
principle: 

• create a relevant superposition of qubits from 
 

• perform a classical calculation in parallel on the 
superposition of inputs; 

• perform a relevant quantum transformation; 

• observe the result using measurements.

|00…0⟩

Exercise.  

Recall the states   and . Prove 
that  

H |0⟩ H |1⟩
H⊗n |00⋯0⟩ =

1

2n ∑
x∈{0,1}n

|x⟩



2. Quantum computing — interference

20

Exercise. Analyse the result of two consecutive   
gates: compute  and  .

H
H(H |0⟩) H(H |1⟩)

Interference: a combination of two waves. 
See Young's double-slit experiment: 
“constructive” and “destructive” 
interference.

in particular, destructive interférences

Fentes de Young - Wikipedia



2. Quantum entanglement
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A circuit producing 
this state:

Bell state: 
|00⟩ + |11⟩

2

in French: « intrication » or « enchevêtrement »

• Any of the two qubits has a probability  to be measured , same for . 

• Assume that we have measured the first qubit, obtaining . What happens if we 
measure the 2nd qubit? Conclude that the properties of the two qubits are correlated. 

Disturbing, because we can separate the two qubits far apart, and they remain 
entangled… Einstein called this a “spooky action at a distance”. 
Bohr - Einstein controversy; Nobel prize 2022 J. Clauser, Alain Aspect, and A. Zeiliger.

1
2

0 1

0



3. Bernstein-Vazirani problem/algorithm
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The problem 

• Input: a function , as a circuit 

• Promise: there exists  such that 
 

• Output: find  

Reminder: given  and  we 
denote by  their scalar product: 

f : {0,1}n → {0,1}

s ∈ {0,1}n

f(x) = x ⋅ s

s

x = x1x2⋯xn s = s1s2⋯sn
x ⋅ s

x ⋅ s = x1 ⋅ s1 ⊕ x2 ⋅ s2 ⊕ ⋯ ⊕ xn ⋅ sn

Exercise.  

Propose a classical algorithm to solve 
the problem. How many calls to  do 
you need?

f

Quite surprising (quantum advantage), yet (relatively) easy to understand

x1
x2
x3
x4

⋅

s1
s2
s3
s4

→ XOR

x1 ⋅ s1
x2 ⋅ s2
x3 ⋅ s3
x4 ⋅ s4



3. Bernstein-Vazirani problem/algorithm
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 for some « hidden »  

1. Construct first   

2. Replace  with . We obtain: 

 

3. Apply  gates on the first  qubits, at the very 
beginning. What do we obtain, without measuring? 

4. Apply  gates on the first  qubits, at the very end. 
Measure them and show that we obtain precisely .

f(x) = x ⋅ s s ∈ {0,1}n

Uf : |xb⟩ → |x⟩ |b ⊕ f(x)⟩

b
|0⟩ − |1⟩

2

Uf : |x⟩( |0⟩ − |1⟩

2 ) → (−1) f(x) |x⟩( |0⟩ − |1⟩

2 )
H n

H n
s

Quantum algorithm: a unique call to f

s = 011

x1

x2

x3

b
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s = 011

x1

x2

x3

b

 for some « hidden »  

1. Construct first   

2. Replace  with . We obtain: 

 

3. Apply  gates on the first  qubits, at the very 
beginning. What do we obtain, without measuring? 

4. Apply  gates on the first  qubits, at the very end. 
Measure them and show that we obtain precisely .

f(x) = x ⋅ s s ∈ {0,1}n

Uf : |xb⟩ → |x⟩ |b ⊕ f(x)⟩

b
|0⟩ − |1⟩

2

Uf : |x⟩( |0⟩ − |1⟩

2 ) → (−1) f(x) |x⟩( |0⟩ − |1⟩

2 )
H n

H n
s

3. Bernstein-Vazirani problem/algorithm
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 for some « hidden »  

1. Construct first   

2. Replace  with . We obtain: 

 

3. Apply  gates on the first  qubits, at the very 
beginning. What do we obtain, without 
measuring? 

4. Apply  gates on the first  qubits, at the very end. 
Measure them and show that we obtain precisely .

f(x) = x ⋅ s s ∈ {0,1}n

Uf : |xb⟩ → |x⟩ |b ⊕ f(x)⟩

b
|0⟩ − |1⟩

2

Uf : |x⟩( |0⟩ − |1⟩

2 ) → (−1) f(x) |x⟩( |0⟩ − |1⟩

2 )
H n

H n
s

3. Bernstein-Vazirani problem/algorithm
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Mesure : 011

 for some « hidden »  

1. Construct first   

2. Replace  with . We obtain: 

 

3. Apply  gates on the first  qubits, at the very 
beginning. What do we obtain, without measuring? 

4. Apply  gates on the first  qubits, at the very end. 
Measure them and show that we obtain precisely .

f(x) = x ⋅ s s ∈ {0,1}n

Uf : |xb⟩ → |x⟩ |b ⊕ f(x)⟩

b
|0⟩ − |1⟩

2

Uf : |x⟩( |0⟩ − |1⟩

2 ) → (−1) f(x) |x⟩( |0⟩ − |1⟩

2 )
H n

H n
s

The output is , with probability !s 1

3. Bernstein-Vazirani problem/algorithm



3. Proof of the Bernstein-Vazirani algorithm
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Lemma 1:

An almost combinatorial proof, no heavy calculations

 Identité≡



28

≡

Lemma 2:

Sortie : 011

At the end, the circuit acts as if we reversed all CNOT 
gates, knowing that the last qubit is set to |1⟩

3. Proof of the Bernstein-Vazirani algorithm
An almost combinatorial proof, no heavy calculations



4. Grover’s algorithm

29

It is a probabilistic algorithm: it finds the solution with a probability of at least  . 

Standard amplification techniques can bring it as close to  as desired. 

SAT (satisfiability) problem, in classical terms: even if  is a known Boolean function, we cannot 
do better than, roughly,  time, under some complexity assumptions.   

Grover would be one of the most useful algorithms, providing a (polynomial) speed-up for 
many classical algorithms. More details during the last lecture.

2/3

1

f
2n

The problem. We are given a function , as a black box 
(circuit). We aim to find, if it exists, a vector  such that . 

Grover’s algorithm (1996) solves the problem in time   while any classical 
algorithm requires  time.

f : {0,1}n → {0,1}
x ∈ {0,1}n f(x) = 1

O( 2n)
Ω(2n)



4. Grover’s algorithm - basic tools
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Reminder from previous lectures 

• For any boolean function , we can build 
 

• We denote  

• By setting , we obtain as output 
 

• This new circuit is denoted  .    

f
Uf : |x⟩ |y⟩ ↦ |x⟩ |y ⊕ f(x)⟩

| − ⟩ =
|0⟩ − |1⟩

2

y = | − ⟩
(−1) f(x) |x⟩ | − ⟩

Zf

Oracle Zf

(−1) f(x) |x⟩

|0⟩ − |1⟩

2
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Simplifying hypothesis. Assume that our 
function  is such that there 
exists a unique  satisfying . 

(We’ll eventually solve the general case, don’t 
worry.) 

Exercise. What is the state of  if we add an  
gate on each of the first  input qubits?

f : {0,1}n → {0,1}
x1 f(x1) = 1

Zf H
n

Oracle Zf

(−1) f(x) |x⟩

|0⟩ − |1⟩

2

4. Grover’s algorithm - basic tools



4. Algorithme de Grover — première observation
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Images : https://fr.wikipedia.org/wiki/Algorithme_de_Grover 

Symplifying hypothesis (reminder). For our function 
there exists a unique  such that . 

Exercise. What is the state of  if we add an  gate on each of 
the first  input qubits? 

• Up: the state right after the  gates (amplitudes) 

• Down: output state, the amplitude of  has changed its sign

f : {0,1}n → {0,1} x1 f(x1) = 1

Zf H
n

H

x1

Output

Initial state after the H gates

https://fr.wikipedia.org/wiki/Algorithme_de_Grover


4. Grover’s algorithm — 
symmetry w.r.t this average
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Grover’s operator 

• Intuition: as if we compute the 
average of the amplitudes, and 
we apply a symmetry w.r.t this 
average 

• We'll detail the implementation 
and the proofs

State after the  circuitZfInitial state after the H gates

Symmetry around the average New state after all these steps



4. Grover’s algorithm 
— repeate
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… a well-chose number of times 

• In the example we measure  
with probability larger than  

We still need to:  

• Detail the implementation  

• Transform this small example 
into an actual proof

x1
90 %State after H gates and one Zf State after one Grover operator

State after two Grover operator



4. Grover’s algorithm
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General scheme. Here  is just another notation for . 

Grover’s diffusion operator performs this “mirror around the average”. Its implementation is 
fairly easy:  

Uω Uf

H⊕nZORH⊕n

https://fr.wikipedia.org/wiki/Algorithme_de_Grover



Would you take some more maths?
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”bra” notation and projections

Recall that a state  represents a vector ( -column matrix).   

We denote by  its conjugate transpose: the column is turned into a  
row. For each coordinate  we should take its complex conjugate… but since we deal 
with real numbers only, its conjugate is still . 

 represents , with  zeros, i.e. the matrix , with one row and  
columns. 

The scalar product of vectors  and  is also denoted ; matrix product of 
 and . 

Projector operator: . It’s the sensor product of the two matrices  and . 

|ψ⟩ = |a1a2…an⟩ 1

⟨ψ | = ⟨a1a2…an |
ai

ai

⟨0n | ⟨00…0 | n [10…0] 2n

|ϕ⟩ |ψ⟩ ⟨φ |ψ⟩
⟨φ | |ψ⟩

|ψ⟩⟨ψ | ⟨ψ | |ψ⟩
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The scalar product of real vectors  and  equals , denoted . 

Projection operator: . The tensor product of the two matrices .  

Properties of the sensor product :  

•  is the projection of vector  on  

• Given two matrices  of size ,  

 

Exercise 1. Write the matrix of , then the one of . 

Exercise 2. Show that  corresponds to the circuit  of function . 

Exercise 3. Show that  = , where .

|ϕ⟩ |ψ⟩ ⟨φ | × |ψ⟩ ⟨φ |ψ⟩

|ψ⟩⟨ψ | |ψ⟩ ⊗ ⟨ψ |

( |ψ⟩⟨ψ | ) |φ⟩ = |ψ⟩(⟨ψ |φ⟩) |φ⟩ |ψ⟩

A, B N × N

A( |ψ⟩⟨ψ | )B = (A |ψ⟩) ⊗ (⟨ψ |B)

|0n⟩⟨0n | 2 |0n⟩⟨0n | − In

2 |0n⟩⟨0n | − In ZOR ORn

H⊕n(2 |0n⟩⟨0n | − In)H⊕n 2 |u⟩⟨u | − In u = H⊕n |0n⟩



4. Grover’s algorithm : the proof
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We denote  and 
 

For any set of boolean vectors  of size  let
. 

Observe that vectors  and  are 
orthogonals.

A1 = {x1}
A0 = {x ∈ {0,1}n : f(x) = 0}

A n
|A⟩ =

1
|A | ∑

x∈A

|x⟩

|A0⟩ |A1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM, YouTube video



39

Let , the “uniform superposition” 
vector 

 

 

 

 is a lainera combination of  and 

|u⟩ = H⊗n |0n⟩

|u⟩ =
1

N ∑
x∈{0,1}n

|x⟩

|u⟩ =
1

N
( ∑

x0∈A0

|x0⟩ + ∑
x1∈A1

|x1⟩)

|u⟩ =
|A0 |

N
|A0⟩ +

|A1 |

N
|A1⟩

|u⟩ |A0⟩ |A1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding  : symmetry around .  

 

 

 

Zf |ψ⟩ |A0⟩

|ψ⟩ = ∑
x∈{0,1}n

αx |x⟩

|ψ⟩ = ∑
x0∈A0

αx0
|x0⟩ + ∑

x1∈A1

αx1
|x1⟩

Zf |ψ⟩ = ∑
x0∈A0

αx0
(−1) f(x0) |x0⟩ + ∑

x1∈A1

αx1
(−1) f(x1) |x1⟩

Zf |ψ⟩ = ∑
x0∈A0

αx0
|x0⟩ − ∑

x1∈A1

αx1
|x1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding : symmetry 
around .  

 

 

 

 

We used the fact that  

H⊕nZORH⊕n |ψ⟩
|u⟩

ZOR = 2 |0n⟩⟨0n | − I

H⊕nZORH⊕n |ψ⟩ = H⊕n(2 |0n⟩⟨0n | − I)H⊕n

= 2H⊕n( |0n⟩⟨0n | )H⊕n − H⊕nIH⊕n

= 2 |u⟩⟨u | − I

H⊕n |0n⟩ = |u⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding the Grover diffusion operator: 
 

1. Symmetry around  

2. Symmetry around  

Equivalent to a rotation of vector  of angle , 
where  is the angle between vectors  and  

(H⊕nZORH⊕n)Zf |ψ⟩

|A0⟩

|u⟩

|ψ⟩ 2θ
θ |u⟩ |A0⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM 

4. Grover’s algorithm : the proof
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3. La combinaison des deux produit… Une rotation d’angle 2θ

1. On applique Zf 2. Puis H⊕nZORH⊕n

Understanding the Grover 
diffusion operator: 

 

1. Symmetry around  

2. Symmetry around  

Equivalent to a rotation of vector 
 of angle , where  is the angle 

between vectors  and  

(H⊕nZORH⊕n)Zf |ψ⟩

|A0⟩

|u⟩

|ψ⟩ 2θ θ
|u⟩ |A0⟩

4. Grover’s algorithm : the proof



4. Grover’s algorithm : choose the number of itérations
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1. We start from , of angle  with  

2. After  itérations, the angle becomes   

3. We aim to measure , thus we want the angle to 
become roughly 90°, or  

 

 

Thus , and for large , .  

Therefore, we choose  itérations

ψ0 = |u⟩ θ |A0⟩

t (2t + 1)θ |A0⟩

A1
π/2

|u⟩ =
1

N
|A1 | +

N − 1

N
|A0⟩

|u⟩ = sin(θ) |A1 | + cos(θ) |A0⟩

sin(θ) =
1

N
N θ ∼

1

N

t = ⌊
π
4

N⌋Une rotation d’angle 2θ

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

,  N = 128 t = 8



4. Grover’s algorithm — the circuit
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Grover’s circuit,  qubits 

1. Apply :  gates on the first  qubits 

2. Apply  and  on qubit  

3. repeat  times the Grover operator: 

4.         add  

5.         add     

6.         add  

7.         add    

8. measure the  first

n + 1

H⊕n H n

X H n + 1

t = ⌊
π
4

N⌋

Zf

H⊕n

ZOR

H⊕n

n
Une rotation d’angle 2θ

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

,  N = 128 t = 8

For the implementation of  and  we use circuits  and ,  with the last qubit set to .Zf ZOR Uf UOR | − ⟩
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Extensions 

• If  has an arbitrary number of solutions, choose the 
number  of iterations uniformely at random in 

. Success probability . 

• One can do better, cf. [John Watrous, YouTube]. 

• Optimisation : , compute  s.t.  is 
maximum: même complexité, [Dürr, Høyer ’97]. 

• Many applications but  gates! Why is this an issue?

f
t

{1,…, π N /4} ≥ 40 %

f : {0,1}n → ℕ x f(x)

2n/2

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

Grover’s circuit 

1. Apply  on the first  qubits, set the last 
one to  

2. repeat  times the Grover 

operator: 

3.         add  then   then  then    

4. Measure the first  qubits

H⊕n n
| − ⟩

t = ⌊
π
4

N⌋

Zf H⊕n ZOR H⊕n

n

Theorem. Grover’s algorithm measures  with 
probability at least , where .

x1

1 −
1
N

N = 2n

4. Grover’s algorithm — the circuit
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https://fr.wikipedia.org/wiki/Algorithme_de_Grover

Exercise 1. 

1. Describe completely Grover’s algorithm, in 
the “simplified” case (unique solution). 

2. Apply it to a function with 2 bits as input. 
Analyze the change in amplitudes after each 
step. What is the probability of finding the 
solution? 

3. Same question for a 1-bit function.

Exercise 2. Now let us consider that the input function 
has no particular restrictions. 

1. Recall the mixed classical/quantum algorithm, which 
finds a solution  such that  with 
probability %, if such a solution exists. 

2. Modify the algorithm to obtain a solution with 
probability at least . Specify its time 
complexity.

x1 f(x1) = 1
≥ 40

1 − 1/N

4. Grover’s algorithm
Theorem. Grover’s algorithm measures  with 
probability at least , where .

x1

1 −
1
N

N = 2n



5. The impact of quantum computing

Objective: explore the impact of quantum programming tools on modern computing and 
delve deeper into the details of a “mixed” algorithm that would sometimes use quantum code. 

A. Shor's algorithm: factorisation and discrete logarithm. Consequences for cryptography, 
‘post-quantum’ cryptography. 

B. Quantum key exchange: BB84 algorithm. 

C. Tools for mixed classical/quantum programming: focus on Grover's algorithm, if it needed 
to be adapted to applications.
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in the short and medium term



A. Shor’s algorithm [P. Shor ’94] 
Allows to solve, in polynomial time w.r.t. 
the number of bits of the input: 

• Problem : find a divisor 
of  , different from  and , if any; 

• The discrète logarithme modulo : find
 such that . 

Factorisation(N)
N 1 N

N
logb(a) = x bx = a mod N
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Wikipedia, Shor’s algorithm

The “quantum” part computes, given numbers  and , the smallest integer  such that  
. The rest is classical. Complexity .

a N r
ar = 1 mod N O(n2) = O((log N)2)



A. Consequence: post-quantum cryptographie
If we could efficient implement Shor’s algorithm, it 
would break: 
• RSA encryption protocol [Rivest, Shamir, Adelman 

’77], whose security relies on the difficulty of 
factoring a (large) number into prime factors.. 

• Diffie-Hellman key exchange protocol [Diffie, 
Hellman ’76], whose security relies on the difficulty of 
calculating the discrete logarithm.
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Wikipedia, Algorithme de Shor

Most protocols currently in use are based on these two problems... 

The emergence of post-quantum cryptography, which has nothing to do with quantum physics 
and offers other protocols that are resistant to this type of attack. 

Examples: CRYSTALS-Kyber (keys), CRYSTALS-Dilithium (signature), based on ‘structured 
Euclidean networks’.



B. Secure key exchange [Bennett-Brassard 84] 
For secure key exchange, a quantum solution already exists. 

Recommended reading and videos: Frédéric Magniez's lectures at the Collège de France, 
https://www.college-de-france.fr/chaire/frederic-magniez-informatique-et-sciences-
numeriques-chaire-annuelle/events 

Objective of key exchange: A and B must agree on a key (random sequence of bits).  

• Assumption that A and B are properly identified (no identity theft). 

• At the end of the protocol, A and B must have the shared key and must be the only ones to 
possess it. If someone has listened into the conversation between A and B, they must realise 
it.
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https://www.college-de-france.fr/chaire/frederic-magniez-informatique-et-sciences-numeriques-chaire-annuelle/events
https://www.college-de-france.fr/chaire/frederic-magniez-informatique-et-sciences-numeriques-chaire-annuelle/events


Why BB84 ?

1. It can be presented in 20 minutes 

•by simplifying it a lot... 

•but without butchering it, I hope 

2. It uses several properties of qubits: 

• vectorial aspect (superposition, measurement) 

• non-cloning theorem 

3. It has already been implemented! 

• qubits: photons 

• optical fibre
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4

C. Bennet

G. Brassard



1st tool : measures in different bases
[Images from the talks of F. Magniez at Collège de 

France] 

Measure and basis: a qubit can be 
measured in any orthogonal basis 
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We will choose two bases   and  
with a rotation of 45°. 

 

Observation: the  measured into the base
  gives  with probability 1/2 and  with 

probability 1/2.  Same for any other 
‘mismatched’ measure

|0⟩, |1⟩ |0′￼⟩, |1′￼⟩

|0′￼⟩
|0⟩, |1⟩ 0 1



BB84 putting the details under the carpet (1)
Quantum communication from Alice to Bob. 

Alice chooses a bitstring  (uniformly at random), and a séquence of bases. This yields 
a sequence of qubits, by interpreting each bit in the corresponding base. These qubits 
are communicated to Bob. 
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Talk of  F. Magniez



Bob  chooses a sequence of bases and measures the received qubits in those bases. 

Alice and Bob communicate the bases choosen by each of them. 
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Talk of F. Magniez

BB84 putting the details under the carpet (2)



On average, half of the bases chosen by Alice and Bob coincide. Only these bits are 
kept as keys. Conclusion: Alice and Bob agreed on half of the bits! (Well, modulo 
errors, but that's not the subject of today's discussion). 

What about intruders and eardropping ??? 
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Talk of F. Magniez

BB84 putting the details under the carpet (3)



2nd tool: no cloning theorem
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Theorem. It is impossible to duplicate an unknown 
qubit.  

• Informally: if we measure it, we distroy its 
superposition (vectoriel behaviour)  

• Formally: prove it using the linearity of quantum 
transformations. See 1st session of exercises. 

Counterintuitive but not difficult to demonstrate, by 
linearity.



Consequences of no cloning on BB84
Admit that some intruder listened to Alice’s messages to Bob. 

It will be impossible for him/her to “put” the intercepted qubits back into the channel 
without altering a large proportion of them. And that will be noticeable. 
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Talk of F. Magniez

Informal, but it can be turned into proof, even if the intruder has clever strategies.

Extrait exposé F. Magniez



Admit that Eve (Evil) listened to the secret exchanges between Alice and Bob. 

Option 1. Eve mesured each qubit sent by Alice to Bob in one of the two bases, at 
random, and “puts it back” in the same base.
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Extrait exposé F. Magniez

Exercise. Compute the probability that the qubit returned by Eve is identical to the qubit sent by 
Alice. Compute the probability that the bit read by Eve is equal to the one sent by Alice. 

How would Bob detect the intrusion if Eve read  qubits?k

Consequences of no cloning on BB84



Assume that Eve adopts a more sophisticated strategy. 

Option 2. Eve chooses some other base , in which she measures the qubit sent 
by Alice, and puts it back in this same base. Let  be the angle of this base with the canonial 
one. 

( |ψ0⟩, |ψ1⟩)
θ
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Talk by F. Magniez

Exercise. What is the probability that the bit read by Bob is the one sent by Alice, despite the 
intrusion? What is the probability that the bit read by Eve is the one sent by Alice? How can the 
intruder be detected?

Talk by F. Magniez

Consequences of no cloning on BB84



C. Grover’s algorithm in mixed algorithms
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Exercise. Let's imagine that we had to implement Grover's puzzle for real. We have discussed 
Grover's quantum circuit implementation at length. 

1. What work would a computer scientist have to do if they only had Qiskit and a quantum 
computer at their disposal? 

2. How could they encode a table of integers, or even Booleans? Even if it were inefficient?

Lov Grover, From Schrödinger’s Equation to the Quantum Search Algorithm, ArXiV 2001. 

Theorem. Grover’s 
algorithm measures 

 with probability at 
least , where 

.

x1

1 −
1
N

N = 2n



C. Quantum RAM : principe
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To implement Grover’s algorithm with an array, 
we would need a “QRAM” to store boolean  (or 
integer) arrays  of size  and access  in 
time . 

 

Moreover, we need superposed access:: 

X N = 2n X[i]
poly(n)

| i⟩ ↦ | i⟩ |X[i]⟩

N−1

∑
i=0

αi | i⟩ ↦
N−1

∑
i=0

αi | i⟩ |X[i]⟩

|01⟩

| + + ⟩

Phalak, Chatterjee, Ghosh, Quantum Random Access Memory For 
Dummies, ArXiV 2023



C. Quantum RAM : implémentation
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From Phalak, Chatterjee, Ghosh, Quantum Random 
Access Memory For Dummies, ArXiV 2023.
See also Arunachalam et al., On the robustness of 
bucket brigade quantum RAM, ArXiV 2015.   

Implementation of a QRAM for an array of size 4. In red, the gates 
activated when reading the address . 

There is a bug in the circuit, can you find it?
|01⟩

https://arxiv.org/pdf/2305.01178
https://arxiv.org/pdf/1502.03450


6. Conclusion
1. Quantum algorithms: circuits, qubits, quantum gates. 

2. Unusual way of thinking; not that complicated mathematically, after all. 

3. Not too complicated: Simons’s algorithm. Finds the period of an -to-  bits function, with a polynomial 
number of calls. Exponential speed-up w.r.t. classical randomized algorithms. 

4. More subtle: Shor’s algorithm for factorisation. Period estimation, (quantum) fast Fourrier transformé. 

5. Quantum cryptography, “teleportation” of an unknown qubit. Entanglement, no cloning, measurement 
in different bases. 

Présentations by Frédéric Magniez, Collège de France. Books, par ex. [Kaye, Laflamme, Mosca, An 
Introduction to Quantum Computing, 2007; Nielsen, Chuang. Quantum computation and quantum information. 
Cambridge University Press, 2010].  

Thesis of Arthur Braida (Eviden/LIFO - Univ Orléans) for adiabatic quantum computing 

Lectures and lecture notes by John Watrous (IBM) on YouTube.

n n
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and further reading



7. Entanglement
Cf. Nobel prize for Alan Aspect et al. 

Bell states(2 entangled qubits): what happens if we separate them by a large distance? 

Well… after measuring the first one, the second one will give the same measure — even if 
the delay between measurements is shorter than the time to communicate at light speed 
among them. 

(Serious) doubts of Einstein [Einstein, Podolsky, Rosen ’35] w.r.t. Bohr’s interprétation; 
the former think it contradicts the locality principle. They propose the hidden variable 
theory, as if the qubits agreed on something before they were separated. 

A. Aspect conducted an experiment in Orsay (with Grangier, Roger, and Dalibard) 
proving that the hidden variable theory does not hold (using Bell’s inequalities). 

Applications to cryptography. So-called ‘teleportation’, in the sense that an unknown 
qubit can be ‘sent’ to someone else, at a distance, without duplication. 
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Etat de Bell :  
|00⟩ + |11⟩

2


