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4. Grover’s algorithm

2

It is a probabilistic algorithm: it finds the solution with a probability of at least  . 

Standard amplification techniques can bring it as close to  as desired. 

SAT (satisfiability) problem, in classical terms: even if  is a known Boolean function, we cannot 

do better than, roughly,  time, under some complexity assumptions.   

Grover would be one of the most useful algorithms, providing a (polynomial) speed-up for 

many classical algorithms. More details during the last lecture.
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f

2n

The problem. We are given a function , as a black box 

(circuit). We aim to find, if it exists, a vector  such that . 

Grover’s algorithm (1996) solves the problem in time   while any classical 

algorithm requires  time.

f : {0,1}n → {0,1}

x ∈ {0,1}n f(x) = 1

O( 2n)

Ω(2n)









4. Grover’s algorithm - basic tools
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Reminder from previous lectures 

• For any boolean function , we can build 

 

• We denote  

• By setting , we obtain as output 

 

• This new circuit is denoted  .    

f

Uf : |x⟩ |y⟩ ↦ |x⟩ |y ⊕ f(x)⟩

| − ⟩ =
|0⟩ − |1⟩

2

y = | − ⟩

(−1) f(x) |x⟩ | − ⟩

Zf

Oracle Zf

(−1) f(x) |x⟩

|0⟩ − |1⟩

2









4

Simplifying hypothesis. Assume that our 

function  is such that there 

exists a unique  satisfying . 

(We’ll eventually solve the general case, don’t 

worry.) 

Exercise. What is the state of  if we add an  

gate on each of the first  input qubits?

f : {0,1}n → {0,1}

x1 f(x1) = 1

Zf H

n

Oracle Zf

(−1) f(x) |x⟩

|0⟩ − |1⟩

2

4. Grover’s algorithm - basic tools





4. Algorithme de Grover — première observation
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Images : https://fr.wikipedia.org/wiki/Algorithme_de_Grover 

Symplifying hypothesis (reminder). For our function 

there exists a unique  such that . 

Exercise. What is the state of  if we add an  gate on each of 

the first  input qubits? 

• Up: the state right after the  gates (amplitudes) 

• Down: output state, the amplitude of  has changed its sign

f : {0,1}n → {0,1} x1 f(x1) = 1

Zf H

n

H

x1

Amplitudes of the output state

Initial state after the H gates

https://fr.wikipedia.org/wiki/Algorithme_de_Grover


4. Grover’s algorithm — 
symmetry w.r.t this average
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Grover’s operator 

• Intuition: as if we compute the 

average of the amplitudes, and 

we apply a symmetry w.r.t this 

average 

• We'll detail the implementation 

and the proofs

State after the  circuitZf
Initial state after the H gates

Symmetry around the average New state after all these steps









4. Grover’s algorithm 
— repeate
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… a well-chose number of times 

• In the example we measure  

with probability larger than  

We still need to:  

• Detail the implementation  

• Transform this small example 

into an actual proof

x1

90 %State after H gates and one Zf
State after one Grover operator

State after two Grover operator



4. Grover’s algorithm
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General scheme. Here  is just another notation for . 

Grover’s diffusion operator performs this “mirror around the average”. Its implementation is 

fairly easy:  

Uω Uf

H⊕nZORH⊕n

https://fr.wikipedia.org/wiki/Algorithme_de_Grover



4. Grover’s algorithm : the proof
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We denote  and 

 

For any set of boolean vectors  of size  let

. 

Observe that vectors  and  are 

orthogonals.

A1 = {x1}

A0 = {x ∈ {0,1}n : f(x) = 0}

A n

|A⟩ =
1

|A | ∑
x∈A

|x⟩

|A0⟩ |A1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM, YouTube video
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Let , the “uniform superposition” 

vector 

 

 

 

 is a lainera combination of  and 

|u⟩ = H⊗n |0n⟩

|u⟩ =
1

N
∑

x∈{0,1}n

|x⟩

|u⟩ =
1

N
( ∑

x0∈A0

|x0⟩ + ∑
x1∈A1

|x1⟩)

|u⟩ =

|A0 |

N
|A0⟩ +

|A1 |

N
|A1⟩

|u⟩ |A0⟩ |A1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding  : symmetry around .  

 

 

 

Zf |ψ⟩ |A0⟩

|ψ⟩ = ∑
x∈{0,1}n

αx |x⟩

|ψ⟩ = ∑
x0∈A0

αx0
|x0⟩ + ∑

x1∈A1

αx1
|x1⟩

Zf |ψ⟩ = ∑
x0∈A0

αx0
(−1) f(x0) |x0⟩ + ∑

x1∈A1

αx1
(−1) f(x1) |x1⟩

Zf |ψ⟩ = ∑
x0∈A0

αx0
|x0⟩ − ∑

x1∈A1

αx1
|x1⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding : symmetry 

around .  

 

 

 

 

We used the fact that  

H⊕nZORH⊕n |ψ⟩

|u⟩

ZOR = 2 |0n⟩⟨0n | − I

H⊕nZORH⊕n |ψ⟩ = H⊕n(2 |0n⟩⟨0n | − I)H⊕n

= 2H⊕n( |0n⟩⟨0n | )H⊕n − H⊕nIH⊕n

= 2 |u⟩⟨u | − I

H⊕n |0n⟩ = |u⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

4. Grover’s algorithm : the proof
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Understanding the Grover diffusion operator: 

 

1. Symmetry around  

2. Symmetry around  

Equivalent to a rotation of vector  of angle , 

where  is the angle between vectors  and  

(H⊕nZORH⊕n)Zf |ψ⟩

|A0⟩

|u⟩

|ψ⟩ 2θ

θ |u⟩ |A0⟩

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM 

4. Grover’s algorithm : the proof
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3. La combinaison des deux produit… Une rotation d’angle 2θ

1. On applique Zf 2. Puis H⊕nZORH⊕n

Understanding the Grover 

diffusion operator: 

 

1. Symmetry around  

2. Symmetry around  

Equivalent to a rotation of vector 

 of angle , where  is the angle 

between vectors  and  

(H⊕nZORH⊕n)Zf |ψ⟩

|A0⟩

|u⟩

|ψ⟩ 2θ θ

|u⟩ |A0⟩

4. Grover’s algorithm : the proof



4. Grover’s algorithm : choose the number of itérations
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1. We start from , of angle  with  

2. After  itérations, the angle becomes   

3. We aim to measure , thus we want the angle to 

become roughly 90°, or  

 

 

Thus , and for large , .  

Therefore, we choose  itérations

ψ0 = |u⟩ θ |A0⟩

t (2t + 1)θ |A0⟩

A1

π/2

|u⟩ =
1

N
|A1 | +

N − 1

N
|A0⟩

|u⟩ = sin(θ) |A1 | + cos(θ) |A0⟩

sin(θ) =
1

N
N θ ∼

1

N

t = ⌊
π

4
N⌋Une rotation d’angle 2θ

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

,  N = 128 t = 8



4. Grover’s algorithm — the circuit
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Grover’s circuit,  qubits 

1. Apply :  gates on the first  qubits 

2. Apply  and  on qubit  

3. repeat  times the Grover operator: 

4.         add  

5.         add     

6.         add  

7.         add    

8. measure the  first qubits

n + 1

H⊕n H n

X H n + 1

t = ⌊
π

4
N⌋

Zf

H⊕n

ZOR

H⊕n

n
Une rotation d’angle 2θ

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

,  N = 128 t = 8

For the implementation of  and  we use circuits  and ,  with the last qubit set to .Zf ZOR Uf UOR | − ⟩
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Extensions 

• If  has an arbitrary number of solutions, choose the 

number  of iterations uniformely at random in 

. Success probability . 

• One can do better, cf. [John Watrous, YouTube]. 

• Optimisation : , compute  s.t.  is 

maximum: même complexité, [Dürr, Høyer ’97]. 

• Many applications but  gates! Why is this an issue?

f

t

{1,…, π N /4} ≥ 40 %

f : {0,1}n → ℕ x f(x)

2n/2

https://fr.wikipedia.org/wiki/Algorithme_de_Grover

Grover’s circuit 

1. Apply  on the first  qubits, set the last 

one to  

2. repeat  times the Grover 

operator: 

3.         add  then   then  then    

4. Measure the first  qubits

H⊕n n

| − ⟩

t = ⌊
π

4
N⌋

Zf H⊕n ZOR H⊕n

n

Theorem. Grover’s algorithm measures  with 

probability at least , where .

x1

1 −
1

N
N = 2n

4. Grover’s algorithm — the circuit
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https://fr.wikipedia.org/wiki/Algorithme_de_Grover

Exercise 1. 

1. Describe completely Grover’s algorithm, in 

the “simplified” case (unique solution). 

2. Apply it to a function with 2 bits as input. 

Analyze the change in amplitudes after each 

step. What is the probability of finding the 

solution? 

3. Same question for a 1-bit function.

Exercise 2. Now let us consider that the input function 

has no particular restrictions. 

1. Recall the mixed classical/quantum algorithm, which 

finds a solution  such that  with 

probability %, if such a solution exists. 

2. Modify the algorithm to obtain a solution with 

probability at least . Specify its time 

complexity.

x1 f(x1) = 1

≥ 40

1 − 1/N

4. Grover’s algorithm

Theorem. Grover’s algorithm measures  with 

probability at least , where .

x1

1 −
1

N
N = 2n







C. Grover’s algorithm in mixed algorithms
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Exercise. Let's imagine that we had to implement Grover's puzzle for real. We have discussed 

Grover's quantum circuit implementation at length. 

1. What work would a computer scientist have to do if they only had Qiskit and a quantum 

computer at their disposal? 

2. How could they encode a table of integers, or even Booleans? Even if it were inefficient?

Lov Grover, From Schrödinger’s Equation to the Quantum Search Algorithm, ArXiV 2001. 

Theorem. Grover’s 

algorithm measures 

 with probability at 

least , where 

.

x
1

1 −

1

N

N = 2
n
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Grover's quantum circuit implementation at length. 
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x
1

1 −

1

N
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n
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Tight bounds on

quantum searching
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We provide a tight analysis of Grover’s recent algorithm for quantum database searching. We give

a simple closed-form formula for the probability of success after any given number of iterations of

the algorithm. This allows us to determine the number of iterations necessary to achieve almost

certainty of finding the answer. Furthermore, we analyse the behaviour of the algorithm when the

element to be found appears more than once in the table and we provide a new algorithm to find such

an element even when the number of solutions is not known ahead of time. Using techniques from

Shor’s quantum factoring algorithm in addition to Grover’s approach, we introduce a new technique

for approximate quantum counting, which allows to estimate the number of solutions. Finally we

provide a lower bound on the efficiency of any possible quantum database searching algorithm and

we show that Grover’s algorithm nearly comes within a factor 2 of being optimal in terms of the

number of probes required in the table.

1 Introduction

Assume you have a large table T [0 . . N − 1] in which
you would like to find some element x. More precisely,
you wish to find an integer i such that 0 ≤ i < N and
T [i] = x, provided such an i exists. This problem can
obviously be solved in a time in O(log N) if the table is
sorted, but no classical algorithm (deterministic or prob-
abilistic) can succeed in the general case—when the el-
ements of T are in an arbitrary order—with probability
better than 1/2, say, without probing more than half the
entries of T . Grover [4] has recently discovered an algo-
rithm for the quantum computer that can solve this prob-
lem in expected time in O(

√
N ). He also remarked that

a result in [1] implies that his algorithm is optimal, up
to a multiplicative constant, among all possible quantum
algorithms.

In this paper we provide a tight analysis of Grover’s
algorithm. In particular we give a simple closed-form for-
mula for the probability of success after any given number
of iterations. This allows us to determine the number of
iterations necessary to achieve almost certainty of finding

∗Département IRO, C.P. 6128, succursale centre–ville, Montréal,
Canada H3C 3J7. {boyer,brassard,tappa}@iro.umontreal.ca

†Supported in part by Nserc and Fcar

‡Supported in part by the esprit Long Term Research Pro-
gramme of the EU under project number 20244 (alcom-it).

§Department of Mathematics and Computer Science, Odense
University, Campusvej 55, DK–5230 Odense M, Denmark.
u2pi@imada.ou.dk

¶Supported in part by Nserc

the answer, as well as an upper bound on the probability
of failure. More significantly, we analyse the behaviour of
the algorithm when the element to be found appears more
than once in the table. An algorithm follows immediately
to solve the problem in a time in O(

√

N/t ) when it is
known that there are exactly t solutions. We also provide
an algorithm capable of solving the problem in a time in
O(

√

N/t ) even if the number t of solutions is not known
in advance. Bringing ideas from Shor’s quantum factor-
ization algorithm [6] into Grover’s algorithm, we sketch a
new quantum algorithm capable of approximately count-

ing the number of solutions. We also generalize Grover’s
algorithm in the case N is not a power of 2. Finally, we
refine the argument of [1] to show that Grover’s algorithm
could not be improved to require much less than half the
number of table lookups that it currently makes when a
50% probability of success is desired.

2 Finding a unique solution

Assume for now that there is a unique i0 such that
T [i0] = x. For any real numbers k and ℓ such that
k2 + (N − 1)ℓ2 = 1, define the state of a quantum register

|Ψ(k, ℓ)〉 = k|i0〉 +
∑

i6=i0

ℓ|i〉

where the sum is over all i 6= i0 such that 0 ≤ i < N .
(We shall never need complex amplitudes in this paper,
except in §7.)

1

http://arxiv.org/abs/quant-ph/9605034v1

