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[t is a probabilistic algorithm: it finds the solution with a probability of at least 2/3.

Standard amplification techniques can bring it as close to 1 as desired. &¥— é/KesClise LeLN §

SAT (satishability) problem, in classical terms: even if fis a known Boolean function, we cannot

do better than, roughly, 2" time, under some complexity assumptions.

Grover would be one of the most useful algorithms, providing a (polynomial) speed-up for
many classical algorithms. More details during the last lecture.
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4. Grover’s algorithm - basic tools

I
7 Reminder from previous lectures
/ * For any boolean function f, we can build
YD f(x) Uy 1) 1y) ~ 1) |y ® )
0)—1|1
. Wedenote | — ) = 0) =11
\/2
[ (—1)/®™
T = DT * Bysetting y = | — ), we obtain as output
Uy (=1 x| -)
YD f(x) | O>\/__‘ D * This new circuit is denoted Z,.
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4. Grover’s algorithm - basic tools

Simplifying hypothesis. Assume that our
U f function f: {0,1}" — {0,1} is such that there

exists a unique x; satisf in.ﬁB’
—Y  ySf(@)— e

(We'll eventually solve the general case, don’t
WOTTY.)

X r — (—1Y9|x)

10) — | 1) r.xercise. What is the state of Z¢if we add an K
y® f () NG gate on each of the first n input qubits?

Oracle Zf



|
0D

il L/\/jj
— — A~ (
[RHE)~——|- — x = (4
N\ ( O&p_g,_ \__> D’*‘%‘_’i’) T
5 )1=> »
Bw B
9S24 =52




4. Algorithme de Grover — premiére observation

1

Images : https:/frwikipedia.org/wiki/Algorithme_de_Grover
zl I I I I I I I Symplifying hypothesis (reminder). For our function
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f:10,1}" = {0,1 }there exists a unique x; such that f(x;) = 1.

04

Initial state after the H gates

1

Exercise. What is the state of Zif we add an H gate on each of

0.8

the first n input qubits?
I i l I l I I * Up: the state right after the H gates (amplitudes)
-l ﬂ o * Down: output state, the amplitude of x; has changed its sign
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Amplitudes of the output state


https://fr.wikipedia.org/wiki/Algorithme_de_Grover
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Initial state after the H gates

Symmetry around the average
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‘ try w.r.t this average
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0,2

State after the Z,circuit

New state after all these steps

4. Grover’s algorithm —

Grover’s operator

* Intuition: as if we compute the
average of the amplitudes, and
we apply a symmetry w.r.t this
average

* We'll detail the implementation
and the proofs
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State after H gates and one Z;
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State after two Grover operator

e ... a well-chose number IHITCS

* In the example we measure x;

State after one Grover operator Wlth prOb ablhty larger th an 90 %

> P 741/
We still need to:

* Detail the implementation

* Transform this small example
into an actual proof



4. Grover’s algorithm
o wﬂ_ Grover diffusion operator

|()> [/ n H':ff:: n L H_ n 2 I()n> <On| o I'n. H‘ nl ... /74:
Uw | ,
@ H /I‘ Ao
5% Repeat O(v/N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover

General scheme. Here U,, is just another notation for Uy

Grover’s diffusion operator performs this “mirror around the average”. Its implementation is
fairly easy:

H®"Z, H®"
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4. Grover’s algorithm : the proof

Grover diffusion operator

o N
" s |

()> // n H®" H®n 2 |0“ > <0n‘ . [n H®n ¢ /74:

— | We denote A, = {x;} and

. g — Ag=1x € {0,1}": f(x) = 0}

Repeat O(v N ) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover

) For any set of boolean vectors A of size n let

1
[A) = [ x).
VT &

\ Observe that vectors |A,) and |A,) are
S g orthogonals.

\ ==
-——/_”-

John Watrous, IBM, YouTube video



4. Grover’s algorithm : the proof

Grover diffusion operator

o N

~

0) e

H Xn

2 |()71> <()N| o I‘n.

H XN

vector

https:/frwikipedia.org/wiki/Algorithme_de_Grover

-~

Repeat O(v N) times

John Watrous, IBM

1 Let |u) = H®"|0"), the “uniform superposition”

— 1 12.’('/{ e/

U
N,‘/l
™ /'O |luyisal
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ainera combination of |A,) and |A))






4. Grover’s algorithm : the proof

Grover diffusion operator

% Understanding Z;| ) : symmetry around |A).

gen —210m) (0" — I, | gen — - — A

-~

Repeat O(v/N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover
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John Watrous, IBM »



4. Grover’s algorithm : the proof

Grover diffusion operator Understanding H EBnZORH on ‘ l/j>: Symmetry
L H®n ; THen {2 0") (0" — I, | H®" - —~= around ‘ bt>
Repeat O(v/N) times
https:/frwikipedia.org/wiki/Algorithme_de_Grover ZOR =2 ‘ On)(on ‘ — 1
) H®"ZopH®" |y) = H®"(2]0")(0" | - DH®"
P TS H¥ ZogH®" W)
// /,,4‘ \ | — 9 HEBn( ‘ On> <On ‘ ) H@n _ HEBn IHEBn
=2|u)(ul|—1
= J |1 Aop)
il “\:;llw
\/ We used the fact that H®"|0") = | u)
John Watrous, IBM
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4. Grover’s algorithm : the proof

srover diffusion operator

N

Rn H®n . |()”> <()’ " MO ; " H®n

-~

Repeat O(v N) times

https:/frwikipedia.org/wiki/Algorithme_de_Grover

John Watrous, IBM

Understanding the Grover diffusion operator:
(H"ZorH®"MZ | )
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Symmetry around | A)

2. Symmetry around | u

Equivalent to a rotation of vector |y) of angle 20,

where @ is the angle between vectors |u) and | A()



4. Grover’s algorithm : the proof
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3. La COmbinaiSOn deS deUX prOdUit... Une rotation d’angle 29
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Understanding the Grover
diffusion operator:

(H®"ZorH®"Z; | w)

1. Symmetry around |A)

2. Symmetry around | u)

Equivalent to a rotation of vector
| w) of angle 26, where 0 is the angle
between vectors |u) and | Ay)



4. Grover’s algorithm : choose the number of itérations

Grover diffusion operator 1. We start from Yo = ‘ l/l), of angle 6 with |AO>
0 n N f n 2 0™ (0| — I, m EEErr L ., .
R [ wllh i 7 5. After t itérations, the angle becomes (27 + 1)0 | Ap)
1) —{H} e
Repeat O(v/N) times 3. We aim to measure A, thus we want the angle to
https:/frwikipedia.org/wiki/Algorithme_de_Grover become YOughly 900, r 71'/ 2

| u) A ]+ [ Ap)

VN VN
) =€in(/6’)\DA1 | + cos(0) | A,)
1

Thus s1m(@) = , and for large N, 6 ~

Une rotation d’angle 26 N=128,t=28 Therefore, we choosée 1 =

15



4. Grover’s algorithm — the circuit

Grover diffusion operator Grover’s Cil‘C“it, n - 1 quitS
l(‘)> _/L H®n g H®n 9 l()”> <(‘)‘”’ — I, H®n \_ . § ._/7/\: @n. .
U. 1. Apply H¥": H gates on the first n qubits
1) ——H
\ M ) 2. Apply X and H on qubitn + 1
Repeat O(v/N) times PPYY 9 T
T
https:/frwikipedia.org/wiki/Algorithme_de_Grover 3. repeat [ = L_\ﬁ\] J times the Grover operator:
4
G®lu)
‘ 4. add Zf
5. add H®"
0. add Zp
7. add H®"

Une rotation d’angle 260 N =128, = 8 .
8. measure the n first qubits

For the implementation of Zcand Z,, we use circuits Urand Up, with the last qubit set to | — ).
16






4. Grover’s algorithm — the circuit

Grover diffusion operator

, = \ Theorem. Grover salgerithm measures x; with
l()> —7L'—'— }IQEEN [,[';if)n 2 l()n> <()n‘ - ]n I{;;’:‘;;.n | TN _/74::

-

Repeat O(v N) times

|
probability at leas ] — —, here N = 2".

https:/frwikipedia.org/wiki/Algorithme_de_Grover Extensions
Grover’s circuit * If fhas an arbitrary number of solutions, choose the
1. Apply H®" on the first 1 qubits, set the last number 7 of iterations uniformely at random in
oneto | — ) {1,...,m/N/4}. Success probability( > 40 %,

T ‘
2. repeatt = LZ\/N | times the Grover One can do better, cf. [John Watrous, YouTubel].

operator: * Optimisation:f: {0,1}" — N, compute x s.t. f(x) is

maximum: méme complexite, [Diirr, Hgyer '97].

3. add Z;then H " then Z,, then H®"

2n/2

* Many applications but gates! Why is this an issue?

4. Measure the first n qubits -









4. Grover’s algorithm

Grover diffusion operator

- N

Ty e A N W e | Theorem. Grover’s algorithm measures x; with

/

— probability at least 1 — —, where N = 2".
Repeat O(v/N) times N

https:/frwikipedia.org/wiki/Algorithme_de_Grover

—

Exercise 2. Now let us consider that the input function
has no particular restrictions.

Exercise 1.

1. Describe completely Grover’s algorithm, in

the “simplified” case (unique solution). 1. Recall the mixed classical/quantum algorithm, which

finds a solution x; such thatf(x;) = 1 with

2.  Apply it to a function with 2 bits as input. probability > 40%, if such a solution exists.

Analyze the change iir aimipiiiudes after each
step. What is the probabi]ity of ﬁndlng the 2. M()dlfy the algorithm to obtain a solution with
solution? probability at least 1 — 1/N. Specity its time

3. Same question for a 1-bit function. complexity.
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C. Grover’s algorithm in mixed algorithms

1. Introduction Consider the following problem from a crossword puzzle:

~r_nh (Solution - piranha) Theorem Grover’s

algorithm measures

You have an online dictionary with 1, 000, 000 words in which the words are arranged alphabetically. You could pro-

gram it to look for the solution to the puzzle so that it typically solves it after looking through 500, 000 words. It is

x; with probability at

very difficult to do much better than this. But that is: only if you limit yourself to a classical computer. A quantum

computer can be in multiple states at the same time and, by proper design, can carry out multiple computations simul- l east 1 _ Wh ere
’

taneously. In case the above dictionary were available on a quantum computer, it would be possible to carry out the N

search 1n only about 1, 000 steps by using the quantum search algorithm. N — 2”
Lov Grover, From Schrodinger’s Equation to the Quantum Search Algorithm, ArXiV 2001.

Exercise. Let's imagine that we had to implement Grover's puzzle for real. We have discussed
Grover's quantum circuit implementation at length.

1. What work would a computer scientist have to do if they only had Qiskit and a quantum
computer at their disposal?

2. How could they encode a table of integers, or cven Rooleans? Even if it were inefficient?

i
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Tight bounds on

quantum searching
Michel Boyer

Université de Montréal®
Gilles Brassard, Frsct
Université de Montréal
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Odense University?
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‘We provide a tight analysis of Grover’s recent algorithm for quantum database searching. We give
a simple closed-form formula for the probability of success after any given number of iterations of
the algorithm. This allows us to determine the number of iterations necessary to achieve almost
certainty of finding the answer. Furthermore, we analyse the behaviour of the algorithm when the
element to be found appears more than once in the table and we provide a new algorithm to find such
an element even when the number of solutions is not known ahead of time. Using techniques from
Shor’s quantum factoring algorithm in addition to Grover’s approach, we introduce a new technique
for approximate quantum counting, which allows to estimate the number of solutions. Finally we
provide a lower bound on the efficiency of any possible quantum database searching algorithm and
we show that Grover’s algorithm nearly comes within a factor 2 of being optimal in terms of the

number of probes required in the table.

1 Introduction

Assume you have a large table T[0.. N — 1] in which
you would like to find some element z. More precisely,
you wish to find an integer ¢ such that 0 <i < N and
Ti] = z, provided such an 7 exists. This problem can
obviously be solved in a time in O(log N) if the table is
sorted, but no classical algorithm (deterministic or prob-
abilistic) can succeed in the general case—when the el-
ements of T are in an arbitrary order—with probability
better than 1/2, say, without probing more than half the
entries of T'. Grover [4] has recently discovered an algo-
rithm for the quantum computer that can solve this prob-
lem in expected time in O(v'N ). He also remarked that
a result in [1] implies that his algorithm is optimal, up
to a multiplicative constant, among all possible quantum
algorithms.

In this paper we provide a tight analysis of Grover’s
algorithm. In particular we give a simple closed-form for-
mula for the probability of success after any given number
of iterations. This allows us to determine the number of
iterations necessary to achieve almost certainty of finding

*Département IRO, C.P. 6128, succursale centre—ville, Montréal,
Canada H3C 3J7. {boyer,brassard,tappa}@iro.umontreal.ca

TSupported in part by NSerc and FCAR

fSupported in part by the ESPRIT Long Term Research Pro-
gramme of the EU under project number 20244 (ALCOM-IT).

§Department of Mathematics and Computer Science, Odense
University, Campusvej 55, DK-5230 Odense M, Denmark.
u2pi@imada.ou.dk

YSupported in part by NSERC

the answer, as well as an upper bound on the probability
of failure. More significantly, we analyse the behaviour of
the algorithm when the element to be found appears more
than once in the table. An algorithm follows immediately
to solve the problem in a time in O(y/N/t ) when it is
known that there are exactly ¢ solutions. We also provide
an algorithm capable of solving the problem in a time in
O(y/N/t ) even if the number ¢ of solutions is not known
in advance. Bringing ideas from Shor’s quantum factor-
ization algorithm [6] into Grover’s algorithm, we sketch a
new quantum algorithm capable of approximately count-
ing the number of solutions. We also generalize Grover’s
algorithm in the case N is not a power of 2. Finally, we
refine the argument of [1] to show that Grover’s algorithm
could not be improved to require much less than half the
number of table lookups that it currently makes when a
50% probability of success is desired.

2 Finding a unique solution

Assume for now that there is a unique iy such that
Tlig) = x. For any real numbers k and ¢ such that
k% + (N — 1)£? = 1, define the state of a quantum register

(W (k, £)) = klio) + D _ i)
iio
where the sum is over all 7 # iy such that 0 <7 < N.

(We shall never need complex amplitudes in this paper,
except in §7.)
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