

Politics : From Propaganda to Democracy

First Murder Mystery: A Warm-Up

Mrs Campbell was found dead in her physics classroom; a bullet to the brain seemed to be the cause of her death. It was not suicide for the bullet wound was on the left side and Mrs Campbell was right handed. Also, Mrs Campbell was too arrogant to end her own life.

After much asking around, Sherlock was able to gather that Mrs Campbell was the most hated teacher at St. Duke's school of scientific arts. Which made it a bit hard to narrow down the suspects. The only clue Sherlock found on the blackboard, in the room where she was murdered, was:

$E=MC^2$

The suspects are:

Simeon Thompson: The student body president, who Mrs Campbell had been blackmailing.

Mary Campbell: Mrs. Campbell's twin, who had always been jealous of her twin sister.

Ruby Griffith: The principal, who had been looking for an excuse to fire her since day one.

Megan Fishwonten: The left-handed best friend, who had always been stuck in the shadow of Mrs Campbell.

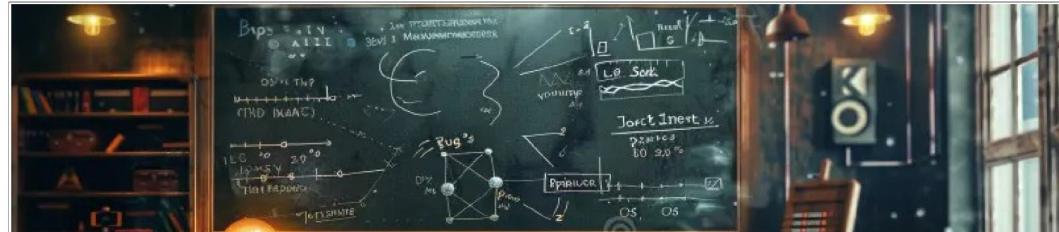
Who was the culprit?

Second Murder Mystery

You and your class have rented out a mansion for an end of year celebration. Everyone is having a lot of fun hanging out, playing games, and eating food. Suddenly you all hear a loud scream coming from the upstairs of the mansion. Everyone rushes upstairs and you all see that on their way to the bathroom one of your classmates had discovered a dead body in the hallway outside of the library. The man who has died is the owner of the mansion and no one seems to know who did it. The only thing everyone agrees on is that it must be someone in the class because there was no one else in the mansion. At the time the body was found the entire class is present.

One of your friends comes up with the suggestion that maybe if they knew the time of death you can determine who must be the murderer based on who was most likely to be with the mansion owner at that time.

How would you proceed ?


Politics : From Propaganda to Democracy

First Murder Mystery: A Warm-Up

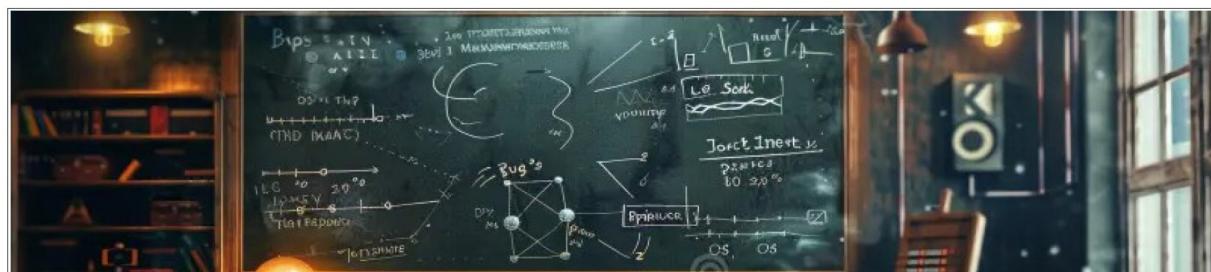
Mrs Campbell was found dead in her physics classroom; a bullet to the brain seemed to be the cause of her death. It was not suicide for the bullet wound was on the left side and Mrs Campbell was right handed. Also, Mrs Campbell was too arrogant to end her own life.

After much asking around, Sherlock was able to gather that Mrs Campbell was the most hated teacher at St. Duke's school of scientific arts. Which made it a bit hard to narrow down the suspects. The only clue Sherlock found on the blackboard, in the room where she was murdered, was:

$$E=MC^2$$

The suspects are:

Simeon Thompson: The student body president, who Mrs Campbell had been blackmailing.


Mary Campbell: Mrs. Campbell's twin, who had always been jealous of her twin sister.

Ruby Griffith: The principal, who had been looking for an excuse to fire her since day one.

Megan Fishwooten: The left-handed best friend, who had always been stuck in the shadow of Mrs Campbell.

Who was the culprit?

Politics : From Propaganda to Democracy

The suspects are:

Simeon Thompson: The student body president, who Mrs Campbell had been blackmailing.

Mary Campbell: Mrs. Campbell's twin, who had always been jealous of her twin sister.

Ruby Griffith: The principal, who had been looking for an excuse to fire her since day one.

Megan Fishwooten: The left-handed best friend, who had always been stuck in the shadow of Mrs Campbell.

Who was the culprit?

Answer:

MC=Mary Campbell

2=Twin

Mary Campbell is the culprit.

Politics : From Propaganda to Democracy

Second Murder Mystery

You and your class have rented out a mansion for an end of year celebration. Everyone is having a lot of fun hanging out, playing games, and eating food. Suddenly you all hear a loud scream coming from the upstairs of the mansion. Everyone rushes upstairs and you all see that on their way to the bathroom one of your classmates had discovered a dead body in the hallway outside of the library. The man who has died is the owner of the mansion and no one seems to know who did it. The only thing everyone agrees on is that it must be someone in the class because there was no one else in the mansion. At the time the body was found the entire class is present.

One of your friends comes up with the suggestion that maybe if they knew the time of death you can determine who must be the murderer based on who was most likely to be with the mansion owner at that time.

How would you proceed ?

Politics : From Propaganda to Democracy

Another one of your friends has the idea that knowing the temperature of the body would help to figure out the time of his death, so immediately a thermometer is found and the corpse's body temperature is taken. According to these measurements the body was 33.89 degrees Celsius at 6 pm when the body was found. Two hours later the body's temperature is taken again but it is now found to be 30.33 degrees Celsius.

The facts:

- The mansion owner was found in the hallway near the library.
- There is only one pathway in front of the library and it leads to the bathroom.
- The temperature of the body was 33.89 degrees Celsius at 6 pm.
- The temperature of the body was 30.33 degrees Celsius at 8 pm.
- The thermostat was found to be set at 21.11 degrees Celsius.

After much discussion everyone was able to remember the times that they were up in the hall passing by the library to walk to the bathroom.

Make sure you can explain and describe your calculations in English.

Did you know?

An exponential equation such as $e^x = 3$ can be rewritten as the equivalent logarithmic equation $x = \log_e 3$. We often use the special notation \ln for the natural logarithm, instead of \log_e .

$$\text{Newton's formula for cooling: } T(t) = T_{env} + (T_0 - T_{env}) e^{-kt}$$

Politics : From Propaganda to Democracy

Newton's formula for cooling: $T(t) = T_{env} + (T_0 - T_{env}) e^{-kt}$

Where:

- $T(t)$ is the temperature of the body at time t ,
- T_{env} is the temperature of the surrounding environment,
- T_0 is the initial temperature of the body (look up average body temperature for this),
- t is the time after death in hours, and
- k is a constant that can be calculated using the formula $e^{-2k} = \frac{T(t+2) - T_{env}}{T(t) - T_{env}}$.

Answer:

According to the wording of the problem treated, after substituting the values and processing the date, it can be said k approximately equals 0.07.

So the time t elapsed before the body was found at 6pm is about 1.38 hours: the owner was killed around 4.62 pm or 4:37pm (4:40pm).

Example of description: To find exponential minus 2k, we subtract the temperature of the surrounding environment from the temperature of the body at time t plus 2, and we divide the result by the temperature of the body at time t minus the temperature of the surrounding environment.

Politics : From Propaganda to Democracy

First Murder Mystery: A Warm-Up

Mrs Campbell was found dead in her physics classroom: a bullet to the brain seemed to be the cause of her death. It was not suicide for the bullet wound was on the left side and Mrs Campbell was right handed. Also, Mrs Campbell was too arrogant to end her own life.

After much poking around, Sherlock was able to prove that Mrs Campbell was the most hated teacher at St. Duke's school of scientific arts. Which made it a bit hard to narrow down the suspects. The only clue Sherlock found on the blackboard, in the room where she was murdered, was:

E=MC²

The suspects are:

Simon Thompson: The student body president, who Mrs Campbell had been blackmailing.

Mary Campbell: Mrs. Campbell's twin, who had always been jealous of her twin sister.

Ruby Griffith: The principal, who had been looking for an excuse to fire her since day one.

Meagan Flakstodon: The left-handed best friend, who had always been stuck in the shadow of Mrs Campbell.

Who was the culprit?

Answer:

Mrs Mary Campbell

2= Twin

Mary Campbell is the culprit.

Second Murder Mystery

You and your class have rented out a mansion for an end-of-year celebration. Everyone is having a lot of fun hanging out, playing games, and eating food. Suddenly you all hear a loud scream coming from the upstairs of the mansion. Everyone rushes upstairs and you all see that on their way to the bathroom one of your classmates had discovered a dead body in the hallway outside of the library. The person who had died is the owner of the mansion and no one seems to know who might have killed him. The only thing everyone agrees on is that it must be someone in the class because there was no one else in the mansion. At the time the body was found the entire class is present.

One of your friends comes up with the suggestion that maybe if they know the time of death you can determine who must be the murderer based on who was most likely to be with the mansion owner at that time.

How would you proceed?

Another one of your friends has the idea but knowing the temperature of the body would help to figure out the time of his death, so immediately a thermometer is found and the corpse's body temperature is taken. According to these measurements the body was 33.89 degrees Celsius at 6 pm when the body was found. Two hours later the body's temperature is taken again but it is now found to be 30.33 degrees Celsius.

Newton's formula for cooling: $T(t) = T_{\text{env}} + (T_0 - T_{\text{env}}) e^{-kt}$

Where:

- $T(t)$ is the temperature of the body at time t ,
- T_{env} is the temperature of the surrounding environment,
- T_0 is the initial temperature of the body (look up average body temperature for this),
- t is the time after death in hours, and
- k is a constant that can be calculated using the formula $e^{-2k} = \frac{T(t+2) - T_{\text{env}}}{T(t) - T_{\text{env}}}$.

Answer:

According to the wording of the problem treated, after substituting the values and processing the date, it can be said k approximately equals 0.07.

So the time t elapsed before the body was found at 6pm is about 1.38 hours: the owner was killed around 4.62 pm or 4:37pm (4:40pm).

Example of description: To find exponential minus 2k, we subtract the temperature of the surrounding environment from the temperature of the body at time t plus 2, and we divide the result by the temperature of the body at time t minus the temperature of the surrounding environment.

(a)	negative b
a + b	a and b add up to add a and b
a	plus
*	minus
a - b = c	to subtract b from a, to deduct b; c is the difference between a and b
a x b = c	a times b; to multiply a by b; c is the product of a by b
abc + abd = ab(c+d)	to factorize ab to factor out ab; ab is the common factor
a(b+c)	a factor b plus c
a/b	a divided by b; a over b, numerator, denominator
(b+c)/a	b/c, all over a
aⁿ	a raised to the power n; a raised to the nth power; a to the n; a to the nth; a to the nth power
a⁻ⁿ	a to the minus/negative n
l'exposant n	exponent n
a², a³	to square a; to cube a; a squared, a cubed
sin²x, cos³y	sine squared x, cosine cubed y (pron. /sain'/)
a^{1/3}	a to the one third
racine carrée de a	the square root of a
racine cubique de a	the cube root of a
a	the cube root of a
e^x	e to the x; exponential x
x=ln y	natural/Napierian logarithm of y (dans la lecture d'une équation, ln y et log P se lisent sous forme abrégée comme en français)
n=log P	decimal/common logarithm of P dans la lecture d'une équation, ln y et log P se lisent sous forme abrégée comme en français
log2=0.30103	logarithme à la base 2 à 5 chiffres – 1 place logarithme, 0 caractéristique – caractéristique 0/0103 – logarithme manuel, manivelle de log – log table, table of logs, règle à calcul – slide rule, échelle, grille, papier – scale, graph, paper
Produit en croix	Cross-multiplication

Politics : From Propaganda to Democracy

**La phrase complexe en anglais :
propositions subordonnées et circonstancielles, pronoms et détermination**

1. Dans chaque cas, fusionnez les phrases en les reliant par un pronom relatif, voire une conjonction de subordination. Certaines modifications peuvent être nécessaires.

1. Richard III betrayed his brother Clarence.
He was sent to prison.
2. Richard III sent Elizabeth Woodville's sons to the Tower of London.
They may have died in this place.
3. William Shakespeare lived under the reign of Henry Tudor's granddaughter.
The play was written in 1593.
4. The body of Richard III was discovered under a parking lot in 2012.
Tudor propaganda against Richard III was partly undone by historians and scientists.
The hate campaign lasted for over four centuries.

Politics : From Propaganda to Democracy

La phrase complexe en anglais :
propositions subordonnées et circonstancielles, pronoms et détermination

1. Dans chaque cas, fusionnez les phrases en les reliant par un pronom relatif, voire une conjonction de subordination. Certaines modifications peuvent être nécessaires.

1. Richard III betrayed his brother Clarence, **who** was sent to prison.
2. Richard III sent Elizabeth Woodville's sons to the Tower of London, **where** they may have died.
3. William Shakespeare, **whose** play was written in 1593, lived under the reign of Henry Tudor's granddaughter.
4. Tudor propaganda against Richard III, **which** lasted for over four centuries, was partly undone by historians and scientists **when** the body of Richard III was discovered under a parking lot in 2012.

Politics : From Propaganda to Democracy

2. Dans les mêmes phrases, faites disparaître les expressions soulignées en les remplaçant par un pronom, un adverbe ou un déterminant équivalent. Aucune autre modification ne doit être apportée.

1. Richard III betrayed his brother Clarence.

He was sent to prison.

2. Richard III sent Elizabeth Woodville's sons to the Tower of London.

They may have died in this place.

3. William Shakespeare lived under the reign of Henry Tudor's granddaughter.

The play was written in 1593.

4. The body of Richard III was discovered under a parking lot in 2012.

Tudor propaganda against Richard III was partly undone by historians and scientists.

The effects of the hate campaign lasted for over four centuries.

Politics : From Propaganda to Democracy

2. Dans les mêmes phrases, faites disparaître les expressions soulignées en les remplaçant par un pronom, un adverbe ou un déterminant équivalent. Aucune autre modification ne doit être apportée.

1. Richard III betrayed **him**.

He was sent **there**.

2. Richard III sent **her** sons to the Tower of London.

They may have died in this place.

3. William Shakespeare lived under the reign of **his** granddaughter.

The play was written in 1593.

4. The body of Richard III was discovered under a parking lot in 2012.

Their propaganda against Richard III was partly undone by historians and scientists.

Its effects lasted for over four centuries.

Politics : From Propaganda to Democracy

Les verbes à préposition

3. Les traductions du verbe "accuser" en anglais ont toutes recours à des prépositions. Complétez les phrases suivantes avec le verbe et la préposition qui conviennent.

Les voleurs ont été accusés d'avoir volé des bijoux d'une valeur de 6000 euros.	The thieves stealing 6,000 euros worth of jewellery.
On a accusé la nounou d'arriver en retard au travail.	The nanny arriving late at work.
Vous pourriez être accusé d'avoir induit la cour en erreur.	You could misleading the court.
Le comptable a été inculpé pour blanchiment d'argent.	The accountant money laundering.

Attention:

Beaucoup de verbes en anglais se construisent avec une préposition ou une particule spécifique, mais certains n'en ont pas besoin, contrairement à leur équivalent français. Par exemple:

Answer the question.

Discuss the situation.

Enter the supermarket.

The candidate lacks experience.

She married an accountant.

You have to obey the rules.

Left-wing parties oppose the plan.

You must resist the temptation.

Politics : From Propaganda to Democracy

3. Les traductions du verbe “accuser” en anglais ont toutes recours à des prépositions. Complétez les phrases suivantes avec le verbe et la préposition qui conviennent.

Les voleurs ont été accusés d'avoir volé des bijoux d'une valeur de 6000 euros.	The thieves were accused of stealing 6,000 euros worth of jewellery.
On a accusé la nounou d'arriver en retard au travail.	The nanny was blamed/criticized for arriving late at work.
Vous pourriez être accusé d'avoir induit la cour en erreur.	You could be charged with misleading the court.
Le comptable a été inculpé pour blanchiment d'argent.	The accountant was indicted for money laundering. <i>/ai/</i>

Attention:

Beaucoup de verbes en anglais se construisent avec une préposition ou une particule spécifique, mais certains n'en ont pas besoin, contrairement à leur équivalent français. Par exemple:

Answer the question.
Discuss the situation.
Enter the supermarket.
The candidate lacks experience.

She married an accountant.
You have to obey the rules.
Left-wing parties oppose the plan.
You must resist the temptation.

Politics : From Propaganda to Democracy

How Math Can Save Democracy

1. With the plurality system, a candidate wins if most voters wanted to elect them.

Right or Wrong?

Politics : From Propaganda to Democracy

How Math Can Save Democracy

1. With the plurality system, a candidate wins if most voters wanted to elect them.

Wrong

WHAT IS

Plurality?

How it works:

The candidate who gets the most votes wins.
This method is used in most US elections.

Plurality ≠ Majority :

A candidate can win even if more voters would have preferred NOT to elect them.

Politics : From Propaganda to Democracy

How Math Can Save Democracy

2. Approval voting is used by a lot of mathematicians because it has no drawbacks.

Right or Wrong?

WHAT IS *Approval Voting*?

How it works: Voters check any number of candidates they would be okay with being elected. The candidate with the most cumulative votes wins.

For example: A family is voting on what to have for dinner:

- Pizza
- Burgers
- Soup

This voter is okay with either pizza or soup for dinner.

Candidates - Votes

- Pizza - 4
- Burgers - 1
- Soup - 2

The family will have pizza for dinner!

Politics : From Propaganda to Democracy

How Math Can Save Democracy

2. Approval voting is used by a lot of mathematicians because it has no drawbacks.

Wrong

WHAT IS *Approval Voting*?

How it works: Voters check any number of candidates they would be okay with being elected. The candidate with the most cumulative votes wins.

For example: A family is voting on what to have for dinner:

	Candidates - Votes
	• Pizza - 4
	• Burgers - 1
	• Soup - 2

This voter is okay with either pizza or soup for dinner.

The family will have pizza for dinner!

Approval voting is not susceptible to strategic voting. It eliminates the spoiler effect and reduces the possibility of vote splitting, thus encouraging participation by smaller parties. It does not fall under the Arrow Impossibility Theorem since it is not a ranked choice method.

BUT it may not be expressive enough as it is impossible to communicate which candidate you prefer the most.

Politics : From Propaganda to Democracy

How Math Can Save
Democracy

3. Ranked-Choice procedures are ideal methods of voting.

Right or Wrong?

the Condorcet Method?

Ranked Choice Voting?

Borda Count?

Politics : From Propaganda to Democracy

How Math Can Save Democracy

3. Ranked-Choice procedures are ideal methods of voting.

Wrong

THEOREM

Arrow's Impossibility Theorem

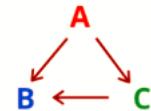
It is impossible to fulfill all of the three above features (Unanimity, No Dictators, IIA) at the same time in any ranked voting system.

Our intuitive concept of fairness contains a number of assumptions that may contradict each other. Arrow's Impossibility Theorem says that no ranked choice voting is perfect. It's impossible to fulfill the three desirable features for a voting system (unanimity, no dictators, independence of irrelevant alternatives) at the same time in any ranked voting system.

For example, in Instant Runoff, the winner may never have been in a first position and may be part of the majority's least preferred options.

Politics : From Propaganda to Democracy

How Math Can Save Democracy


4. The method presented here is not called Borda Count.

Right or Wrong?

Ballot: 1 2 3
C B A
A A C
B C B

A vs B: A B vs C: B A vs C: A

A is the winner!

Politics : From Propaganda to Democracy

How Math Can Save Democracy

4. The method presented here is not called Borda Count.

Right

WHAT IS

the Condorcet Method?

How it works: This is a voting method where each voter ranks all the candidates.

Ballot: 1 2 3

C B A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

B C B

1 2 3

B C A

A A C

Politics : From Propaganda to Democracy

How Math Can Save Democracy

5. Condorcet would not be the greatest method to elect a president.

Right or Wrong?

WHAT IS *the Condorcet Method?*

How it works: This is a voting method where each voter ranks all the candidates. **Ballot:** 1 2 3

To calculate a winner, we look at one-on-one contests of each candidate: If more people ranked one candidate above the other, that candidate wins that pairwise contest.

A vs B: A B vs C: B A vs C: A

The candidate who beats all the other candidates wins.
A is the winner!

C	B	A
A	A	C
B	C	B

Politics : From Propaganda to Democracy

How Math Can Save Democracy

5. Condorcet would not be the greatest method to elect a president.

Right

WHAT IS THE MATHEMATICS OF DEMOCRACY

the Condorcet Method?

How it works: This is a voting method where each voter ranks all the candidates.

To calculate a winner, we look at one-on-one contests of each candidate. If more people ranked one candidate above the other, that candidate wins that pairwise contest.

Ballot: 1 2 3
C B A
A C A
B C B

A vs B: A B vs C: B A vs C: A

 The candidate who beats all the other candidates wins.
A is the winner!

You need ONE president, but if a **Condorcet circle occurs**, the method may fail to produce a winner.

Additionally, a candidate does not have to be ranked first to win, they just have to be ranked higher. It produces a good compromise candidate, but fails to provide an incentive for candidates to be innovative or take a stand on controversial issues (the winner may simply be the least offensive)

Politics : From Propaganda to Democracy

How Math Can Save
Democracy

The United States is the world's oldest democracy.

But oldest doesn't always mean *best*.

Politics : From Propaganda to Democracy

How Math Can Save
Democracy

Let the ~~Voters~~ Choose the ~~Politicians~~
Voters
Politicians

Hard
Make Voter Registration ~~Easy~~

Make Voting ~~In~~ Convenient

Politics : From Propaganda to Democracy

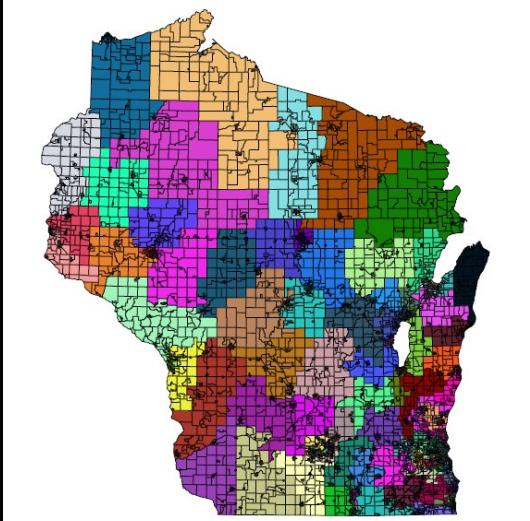
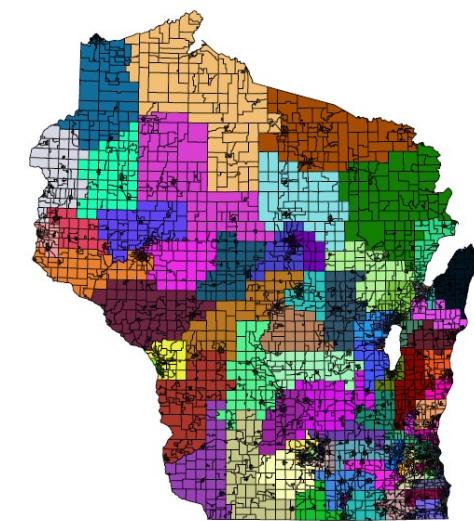
How Math Can Save Democracy

Every four years, Americans participate in a presidential election. However, they do not vote for president. Rather, they **vote for electors who represent their state in a second round of voting. The candidate who wins a state wins all its electors**, and those people, called the Electoral College, actually vote for the president.

The **Winner-take-all** principle explains why the result of the presidential election does not always reflect popular votes.

Some argue that if your candidate loses in your state, then your vote “doesn’t count” in the Electoral College. They feel they should have a direct election for president, every citizen gets one vote, and whoever gets the most votes should win. Although some people think this system is unfair, it keeps small states from being overwhelmed by big states, and rural areas from being overshadowed by cities. Historically, the Electoral College was created as a compromise that allowed the 13 original states, which viewed themselves as separate independent nations, to cooperate and choose a central government.

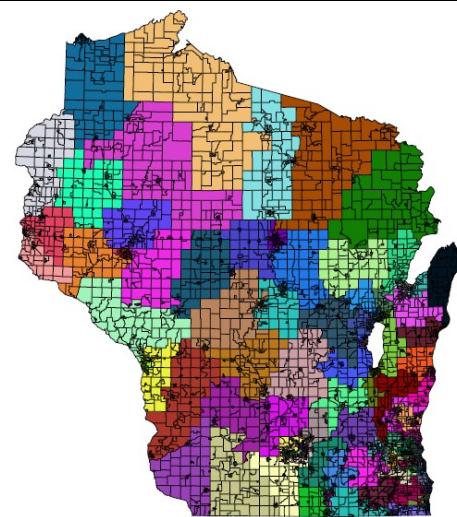
Politics : From Propaganda to Democracy



How Math Can Save
Democracy

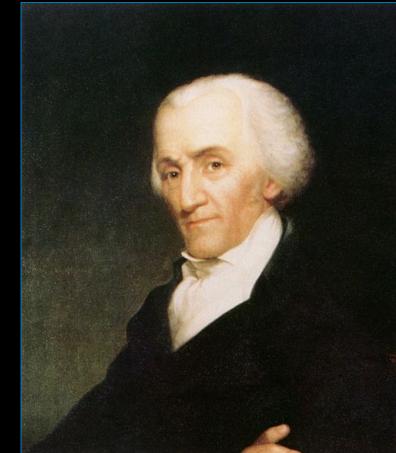
Let the ~~Politicians~~ ^{Voters} Choose the ~~Politicians~~
~~Politicians~~

Politics : From Propaganda to Democracy

How Math Can Save
Democracy


Politics : From Propaganda to Democracy

How Math Can Save
Democracy


Can Math
Solve the
Gerrymandering
Problem?

CMU mathematicians' work on detecting bias
in congressional district maps makes its
debut before the U.S. Supreme Court

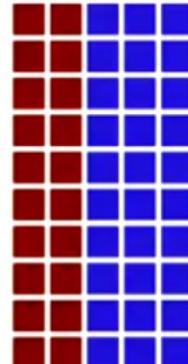
Politics : From Propaganda to Democracy

How Math Can Save
Democracy

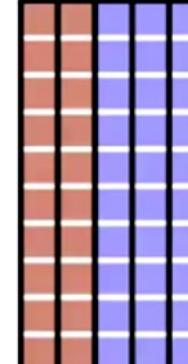
Gerrymandering

Data Manipulation

How Math Can Save Democracy



The term **gerrymandering** is a portmanteau of a **salamander** and **Elbridge Gerry**, Vice President of the United States until his death, who, as governor of Massachusetts in 1812, signed a bill that created a partisan district in the Boston area that was compared to the shape of a mythological salamander. The term has negative connotations, and gerrymandering is almost always considered a corruption of the democratic process.


Gerrymandering is the political manipulation of electoral district boundaries to advantage a party, group, or socioeconomic class within the constituency. Wayne Dawkins describes it as politicians picking their voters instead of voters picking their politicians.

Data Manipulation

How Math Can Save Democracy

60% blue,
40% red

3 blue districts,
2 red districts

BLUE WINS

5 blue districts,
0 red districts

BLUE WINS

2 blue districts,
3 red districts

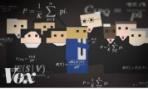
RED WINS

Data Manipulation

How Math Can Save Democracy

Can Math Solve the Gerrymandering Problem?

1. What kind of 2018 maps are you looking at?


a. Which state do they represent?
b. What is each map's relation to the gerrymandering problem? Justify.

2. As a mathematician, what could you do to prove a case of partisan gerrymandering?

a. Which data, criteria or parameters would you study to evaluate the degree of partisan gerrymandering of a particular map and its impact on elections?
b. Would you imagine particular equations to prove or to account for the phenomenon of partisan gerrymandering?

3. Watch Vox's video about "The algorithm that could help end partisan gerrymandering" (00:00-02:10) and answer the following questions.

a. Why is it so difficult for the Supreme Court to rule against gerrymandering? In other words, why do they need mathematicians?
b. What is the mathematicians' strategy to prove a partisan gerrymandering?
c. What criteria are they taking into account?

4. Now that you gathered more information, consider question 2 again.

a. What specific data and figures would you analyze to account for the various criteria? What relations would you pay attention to through equations?
b. To go further in your hypotheses and attempt to design a precise equation, you may have a look at the "GM-Clue" document on Céline.

5. Do you think about other instances of data manipulation that math can help with (whether on the dark side or on the light side)?

6. Are you a genius at gerrymandering?

Puzzle 1: Easy
Divide the grid into 5 regions of 5 cells each. Purple, the minority colour, must win the majority of regions.

Y	Y	P	P	Y
P	P	Y	Y	P
Y	Y	P	P	Y
P	P	Y	Y	P
Y	Y	P	P	Y

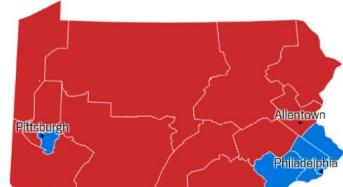
Try and solve Alex Bellos's gerrymandering puzzles.
If you are lost, your partner may look at the solution for the second puzzle on Céline and give you directions.

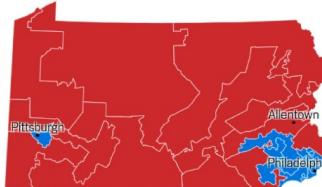
Puzzle 2: Medium
Divide the grid into 5 regions of 10 cells each. Purple, the minority colour, must win the majority of regions. No ties allowed in any region.

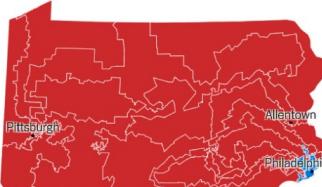
Y	Y	Y	P	P	Y	Y	Y	P	P
P	P	Y	Y	Y	Y	Y	Y	Y	Y
Y	Y	Y	P	P	Y	Y	Y	Y	Y
P	P	Y	Y	Y	Y	Y	Y	Y	Y
Y	Y	Y	P	P	Y	Y	Y	Y	Y

Data Manipulation

How Math Can Save Democracy


Can Math Solve the




Gerrymandering Problem?

1. What kind of 2018 maps are you looking at?

- a. Which state do they represent?
- b. What is each map's relation to the gerrymandering problem? Justify.

2. As a mathematician, what could you do to prove a case of partisan gerrymandering?

- a. Which data, criteria or parameters would you study to evaluate the degree of partisan gerrymandering of a particular map and its impact on elections?
- b. Would you imagine particular equations to prove or to account for the phenomenon of partisan gerrymandering?

Data Manipulation

How Math Can Save Democracy

Can Math Solve the

Gerrymandering Problem?


1. What kind of 2018 maps are you looking at?

- Which state do they represent? **Pennsylvania**.
- What is each map's relation to the gerrymandering problem? Justify.

Possible nonpartisan map

7 Clinton Districts 11 Trump Districts

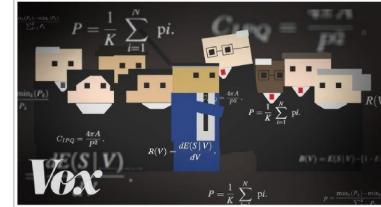
Current map

6 Clinton Districts 12 Trump Districts

Possible extreme gerrymander

3 Clinton Districts 15 Trump Districts

2. As a mathematician, what could you do to prove a case of partisan gerrymandering?


- Which data, criteria or parameters would you study to evaluate the degree of partisan gerrymandering of a particular map and its impact on elections?
- Would you imagine particular equations to prove or to account for the phenomenon of partisan gerrymandering?

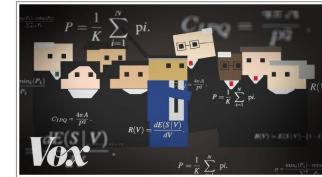
Data Manipulation

How Math Can Save Democracy

3. Watch Vox's video about “The algorithm that could help end partisan gerrymandering” (00:00-02:10) and answer the following questions.

- Why is it so difficult for the Supreme Court to rule against gerrymandering? In other words, why do they need mathematicians?
- What is the mathematicians' strategy to prove a partisan gerrymandering?
- What criteria are they taking into account?

4. Now that you gathered more information, consider question 2 again.


- What specific data and figures would you analyze to account for the various criteria? What relations would you pay attention to through equations?
- To go further in your hypotheses and attempt to design a precise equation, you may have a look at the “GM-Clue” document on Céline.

Data Manipulation

How Math Can Save Democracy

3. Watch Vox's video about "The algorithm that could help end partisan gerrymandering" (00:00-02:10) and answer the following questions.

a. Why is it so difficult for the Supreme Court to rule against gerrymandering? In other words, why do they need mathematicians? The Supreme Court has yet to settle on a standard or definition of political fairness. They just simply don't want to declare a partisan gerrymandering without some way to measure them. They need mathematicians to build a measurement tool to help the Court measure whether political parties have manipulated a map to gain an unfair advantage – a gerrymandering ruler. The court wants to be able to determine the intent behind the district maps that were drawn – they want to read the minds of the map drawers.

b. What is the mathematicians' strategy to prove a partisan gerrymandering? First mathematicians identified what criteria are important to the Court. Then they use a supercomputer to generate district maps based on those criteria. They create a billion maps using only the criteria required by law and the traditional districting principles – no political information (nonpartisan). If the current map doesn't look like any of the possibilities generated by the algorithm, that's a good indication a partisan gerrymander has occurred.

c. What criteria are they taking into account? The criteria are : population equity (about the same number of people in every district) ; contiguity and compactness (they can't be broken up into a bunch of pieces) ; traditional districting principles (political subdivisions, such as cities, counties, municipal boundaries or identifiable communities of like-minded individuals, should be preserved).

4. Now that you gathered more information, consider question 2 again.

- What specific data and figures would you analyze to account for the various criteria? What relations would you pay attention to through equations?
- To go further in your hypotheses and attempt to design a precise equation, you may have a look at the "GM-Clue" document on Célène.

Data Manipulation

How Math Can Save Democracy

.....THE MATHEMATICS OF DEMOCRACY.....

WHAT IS *Packing and Cracking*?

Definitions: When district lines are drawn, various tactics can be used to maintain political power. For example:

Putting opposition voters into a small number of conceded districts is called **packing**.

Spreading opposition voters thinly over the rest of the districts to minimize their impact is called **cracking**.

cracking

pink	pink	pink
yellow	yellow	yellow
yellow	yellow	yellow

3 pink districts,
0 yellow districts

packing

pink	pink	pink
yellow	yellow	yellow
yellow	yellow	yellow

1 pink district,
2 yellow districts

Data Manipulation

How Math Can Save
Democracy

..... THE MATHEMATICS OF DEMOCRACY

WHAT IS *the Efficiency Gap?*

Wasted votes are those that do not affect an election: either votes above the 50% majority threshold for a winning candidate or any for a losing candidate. The **efficiency gap (EG)** is one method for measuring gerrymandering

Data Manipulation

How Math Can Save Democracy

..... THE MATHEMATICS OF DEMOCRACY

WHAT IS *the Efficiency Gap?*

Wasted votes are those that do not affect an election: either votes above the 50% majority threshold for a winning candidate or any for a losing candidate. The **efficiency gap (EG)** is one method for measuring gerrymandering by adding up the wasted votes of each party's candidates over all electoral districts.

$$EG = \frac{|(\text{one party's wasted votes}) - (\text{other party's wasted votes})|}{\text{total number of votes}}$$

Data Manipulation

How Math Can Save
Democracy

..... THE MATHEMATICS OF DEMOCRACY

WHAT IS *Polsby-Popper Compactness Score*?

We can try to quantify gerrymandering by measuring how "reasonably shaped" a voting district is. The **Polsby-Popper Compactness Score** of district S , $PP(S)$, measures how much "unnecessary" perimeter S has.

Data Manipulation

How Math Can Save Democracy

.....THE MATHEMATICS OF DEMOCRACY.....

WHAT IS *Polsby-Popper Compactness Score*?

We can try to quantify gerrymandering by measuring how "reasonably shaped" a voting district is. The **Polsby-Popper Compactness Score** of district S, $PP(S)$, measures how much "unnecessary" perimeter S has.

$$PP(S) = 4\pi \frac{\text{area enclosed by the district}}{(\text{perimeter of the district})^2}$$

If there is too much perimeter for the area, $PP(S)$ is closer to

If $PP(S)$ is close to π , this indicates that the district might have been gerrymandered.

If there is a small amount of perimeter for the area, $PP(S)$ is closer to

Data Manipulation

How Math Can Save Democracy

..... THE MATHEMATICS OF DEMOCRACY

WHAT IS *Polsby-Popper Compactness Score*?

We can try to quantify gerrymandering by measuring how "reasonably shaped" a voting district is. The **Polsby-Popper Compactness Score** of district S, $PP(S)$, measures how much "unnecessary" perimeter S has.

$$PP(S) = 4\pi \frac{\text{area enclosed by the district}}{(\text{perimeter of the district})^2}$$

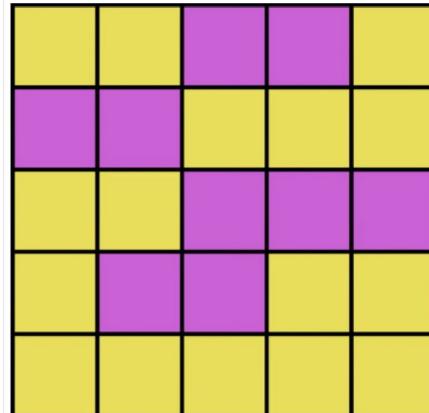
If there is too much perimeter for the area, $PP(S)$ is closer to 0.

If $PP(s)$ is close to 0, this indicates that the district might have been gerrymandered.

If there is a small amount of perimeter for the area, $PP(S)$ is closer to 1.

Data Manipulation

How Math Can Save Democracy

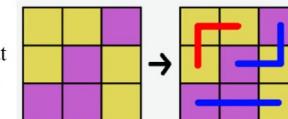


5. Do you think about other instances of data manipulation that math can help with (whether on the dark side or on the light side)?

6. Are you a genius at gerrymandering?

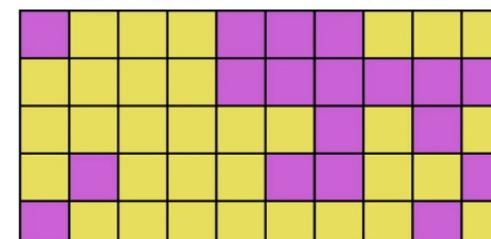
Puzzle 1: Easy

Divide the grid into 5 regions of 5 cells each. Purple, the minority colour, must win the majority of regions.



Try and solve Alex Bellos's gerrymandering puzzles.

If you are lost, your partner may look at the solution for the second puzzle on Céline and give you directions.

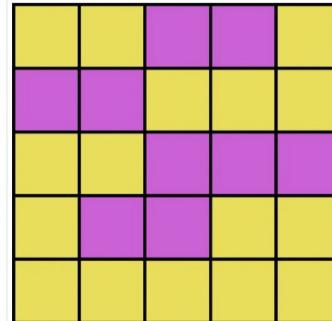

Example

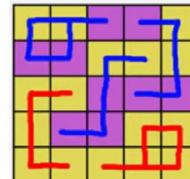
Divide the grid into 3 regions of 3 cells each. Purple, the minority colour, must win the majority of the regions.

Puzzle 2: Medium

Divide the grid into 5 regions of 10 cells each. Purple, the minority colour, must win the majority of regions. No ties allowed in any region.

Data Manipulation

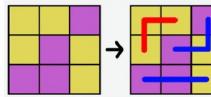

How Math Can Save Democracy



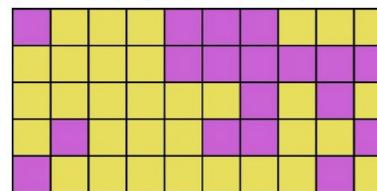
6. Are you a genius at gerrymandering?

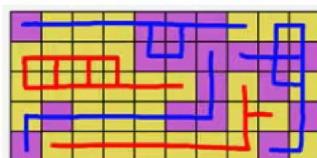
Puzzle 1: Easy

Divide the grid into 5 regions of 5 cells each. Purple, the minority colour, must win the majority of regions.



Try and solve Alex Bellos's gerrymandering puzzles.
If you are lost, your partner may look at the solution for the second puzzle on Céline and give you directions.


Example


Divide the grid into 3 regions of 5 cells each. Purple, the minority colour, must win the majority of regions.

Puzzle 2: Medium

Divide the grid into 5 regions of 10 cells each. Purple, the minority colour, must win the majority of regions. No ties allowed in any region.

