M1 Info Année 2013 - 2014

Informatique

Contrôle continu : Programmation Parallèle - 1h

Exercice 1. PRAM: Suite croissante (6pts)

Soit une suite $(u_i)_{0 \le i \le n-1}$ écrivez un programme PRAM qui

- 1. détermine si une suite est croissante ou pas,
- 2. et si elle est croissante, compte combien d'éléments il resterait si les doublons étaient supprimés.

On suppose que n est connu par l'ensemble des processeurs. Vous indiquerez le nombre de processeurs utilisés et votre convention pour les numéroter. N'oubliez pas d'indiquer sur quelle machine PRAM votre code fonctionne.

Exercice 2. MPI: Extrait du tri bitonique (8pts)

Soit le programme principal suivant (cf TD suite bitonique)

- 1. Donnez la fonction EchangeDroit(int* s, int taille) qui permet de faire un échange tel qu'illustré par l'exemple suivant où * symbolise un élément non initialisé et taille = 4.
 - ullet Le tableau s tel qu'initialisé par le programme principal

p_0	p_1	p_2	p_3
$* s_0 s_1 s_2 s_3$	* \$\sigma_4 \sigma_5 \sigma_6 \sigma_7\$	* s ₈ s ₉ s ₁₀ s ₁₁	$* s_{12} s_{13} s_{14} s_{15}$

• Le tableau s après l'appel de la fonction d'échange

p_0	p_1	p_2	p_3	
$* s_0 s_1 s_2 s_3$	$s_3 \ s_4 \ s_5 \ s_6 \ s_7$	$s_7 \ s_8 \ s_9 \ s_{10} \ s_{11}$	$s_{11} \ s_{12} \ s_{13} \ s_{14} \ s_{15}$	ŀ

Le premier élément du tableau s du processeur p_0 est symbolisé par *. Ca signifie que le tableau s pour le processeur p_0 sera un cas particulier et sera traité différemment par les autres fonctions de calculs sur s.

- Donnez la fonction PermutationCyclique(int *s, int taille) qui permet de faire une permutation cyclique du tableau s.
 - ullet Le tableau s après l'appel de la fonction de permutation

p_0	p_1	p_2	p_3
$* s_{15} s_0 s_1 s_2$	* s ₃ s ₄ s ₅ s ₆	* \$7 \$8 \$9 \$10	$* s_{11} s_{12} s_{13} s_{14}$

Exercice 3. Diffusion en $log_2(p)$ (6pts)

Ecrivez la fonction Diffusion(int *a, int root) qui diffuse le scalaire a défini sur le processeur root sachant que pour cette diffusion vous ne pouvez utiliser que les fonctions send et recv bloquantes et qu'elle doit être effectuée en $log_2(p)$ où p est le nombre de processeurs.