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Motivation 1

The baseline cross-section regression model

yi = β0 +
K∑

k=1

βk xik + εi εi ∼ i.i.d .(0, σ2) i = 1, . . . ,N

Well known problems: heterogeneity / endogeneity / omitted variables etc.

⇒ Violation of the exchangeability hypothesis
“different patterns of realized errors are equally likely to occur if the realizations are
permuted across countries.” (Durlauf et al. 2005, p. 581)

Neglected problem: interaction between individuals
⇒ spatial autocorrelation
⇒ spatial spillovers: feedback effects and indirect effects
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Motivation 2

Great progress has been made in the past decade on the theoretical aspects of spatial
econometrics, but

Little has been proposed from the economic theory perspective to justify the use of spatial
econometric models

Little attention has been paid to the interpretation of the models in terms of impacts in the
applied literature

The aim of this presentation is to bridge the gap by proposing interpretations of various
spatial econometric (cross-section and panel data) models when it comes to impact
analysis

We believe that this could be useful for applied researchers and policy makers
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Cross-Section Spatial Econometric Models

SAR, SDM and SEM specifications
Basic results
Hypotheses
Parameter Space
Estimation

Interaction multipliers
Impact analysis
Impact of random shocks

Applications
Growth, Technological Interdependence and Spatial Externalities: Theory and
Evidence, Journal of Applied Econometrics, 22, 1033-1062, 2007
A Contribution to the Theory and Empirics of Schumpeterian Growth with
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SAR specification: The spatial autoregressive model

The SAR specification adds the spatially lagged endogenous variable to the standard
explanatory variables on the right hand side of the classical cross section regression
model, for i = 1, ...,N we have then:

yi,N = β0 + ρN

N∑
j=1

wij,Nyj,N +
K∑

k=1

xik,Nβk,N + εi,N (1)

or in more compact matrix form:

yN = β0ιN + ρNWNyN + XNβN + εN (2)

If the interaction matrix is normalized to have row sums of unity, with weights
w∗ij,N = wij,N/

∑
j wij,N , then the i th row of the vector W∗N yN , can be interpreted as the

weighted average of the neighboring values of the spatial unit i using the spatial lag
operator, i.e. [W∗N yN ]i =

∑
j w∗ij,Nyj,N .

Note that, in matrix form, W∗N = DNWN , where DN = diag(1/
∑

j wij,N ) is a diagonal matrix
containing the inverse of the row sums of WN .
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SDM specification: The spatial Durbin model

A straightforward generalization of the SAR model consists to add the spatially lagged
exogenous variables to the specification to obtain the so-called Spatial Durbin Model, for
i = 1, ...,N we have then:

yi,N = β0 + ρN

N∑
j=1

wij,Nyj,N +
K∑

k=1

xik,Nβk,N +
K∑

k=1

wij,Nzik,Nγk,N + εi,N (3)

or in more compact matrix form:

yN = ρNWNyN + XNβN + WNZNγN + εN (4)

For ease of exposition, let us write the SDM as a SAR model as follows:

yN = ρNWNyN + X̃NbN + εN (5)

where X̃N = [ι XN WNZN ] and bN = [β0, β
′
N , γ
′
N ]′ with ZN being either XN or

ZN = [XN Z̃N ].
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Basic results
Spatial filter

For simplicity and without loss of generality, consider the SAR model as defined in
equation (2), with XN including now the constant term:

yN = ρNWNyN + XNβN + εN (6)

The spatial filter is defined as (IN − ρNWN ). Note that if ρN was known, we could filter out
spatial autocorrelation from yN and then use the classical regression model as follows:

(IN − ρNWN )yN = XNβN + εN (7)

Of course ρN is usually unknown and has to be estimated as well as βN and σ2
ε,N .
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Basic results
Reduced form

If (IN − ρNWN ) is invertible, the reduced form of the SAR specification is obtained as:

yN = (IN − ρNWN )−1XNβN + (IN − ρNWN )−1εN (8)

Therefore, we need to precisely define the invertibility condition for (IN − ρW ) which is
needed to write the reduced form: (IN − ρNWN ) is invertible if det(IN − ρNWN ) 6= 0. Note
first that if ρN = 0, (IN − ρNWN ) is non singular. Now consider ρN 6= 0, we have:

det(IN − ρNWN ) = det[(−ρN )(WN −
1
ρN

IN )] (9)

= (−ρN )N det(WN −
1
ρN

IN )

Therefore det(IN − ρNWN ) 6= 0 and (IN − ρNWN ) is non singular if ρ−1
N /∈ {ν1,N , ..., νN,N},

where ν1,N , ..., νN,N denote the eigenvalues of WN , i.e. if ρ−1
N is not an eigenvalue of WN .

The parameter space for ρN will be specified and discussed in more details below.
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Basic results
Reduced form implications

The reduced form has two important implications:

First, in (conditional) mean, the value of the dependent variable in the cross-sectional unit i
will be affected not only by the values taken by the explanatory variable in the
cross-sectional unit i , but also by those in all other cross-sectional units through the
inverse spatial transformation (I − ρNWN )−1, which is a full matrix. This is the so-called
global spatial multiplier effect or global interaction effect.

Second, a random shock in a specific cross-sectional unit i does not only affect the value
of the dependent variable in the same unit, but also has an impact on the values of
dependent variable in all other cross-sectional units through the same inverse spatial
transformation. This is the so-called spatial “diffusion” process of random shocks.
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Basic results
Variance-covariance matrix

Assuming that XN is nonstochastic, the mathematical expectation of yN is
E(yN ) = (IN − ρNWN )−1XNβN .

The variance-covariance matrix of yN is in turn obtained as:

V(yN ) = σ2
ε,N (IN − ρNWN )−1(IN − ρNW ′N )−1 (10)

The structure of this variance-covariance matrix is such that every location is correlated
with every other location in the system, but closer locations more so. It is also interesting to
note that the variances at each location, are related to the neighborhood structure and are
therefore not constant, inducing heteroskedasticity even though the initial process is not
heteroskedastic.
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Basic results
Variance-covariance matrix

Moreover, note that:

WNyN = WN (IN − ρNWN )−1XNβN + WN (IN − ρNWN )−1εN (11)

and that the spatially lagged endogenous variable WNyN is correlated with the error term
εN , because, in general:

E[(WNyN )′εN ] = E[(WN (IN − ρNWN )−1XNβN + WN (IN − ρNWN )−1εN )′εN ]

= E[β′NX ′N (IN − ρNW ′N )−1W ′NεN + ε′N (IN − ρNW ′N )−1W ′NεN ]

= β′NX ′N (IN − ρNW ′N )−1W ′N E[εN ] + E[ε′N (IN − ρNW ′N )−1W ′NεN ]

= E[ε′N (IN − ρNW ′N )−1W ′NεN ] (12)

= E[tr(ε′N (IN − ρNW ′N )−1W ′NεN )]

= E[tr(IN − ρNW ′N )−1W ′NεNε
′
N ]

= tr(IN − ρNW ′N )−1W ′N E(εNε
′
N )

= σ2
ε,N tr(IN − ρNW ′N )−1W ′N 6= 0

In general tr WN (IN − ρNWN )−1 will not be equal to zero. A direct implication of this result
is that the parameters of equation (1) cannot be consitently estimated by OLS.
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Hypotheses 1

More specifically, the interaction matrix and the autoregressive parameter are generally assumed
to satisfy the following assumptions (Lee, 2004).

Assumption 1 (a) The disturbances {εi,N : 1 ≤ i ≤ N,N ≥ 1} are identically distributed.
Moreover, for each sample size N, they are jointly independently distributed with
E(εi,N ) = 0 and E(ε2

i,N ) = σ2
ε,N , where 0 < σ2

ε,N < b with b <∞. (b) Finally, E(|εi,N |4+η)

for some η > 0 exists, that is, a moment higher than the fourth exists.

Assumption 2 The elements of XN are uniformly bounded constants, XN has the full rank
k , and limN→∞(1/N)X ′NXN exists and is non singular.

Assumption 3 (a) All diagonal elements of WN are zero. (b) ρN ∈ (−aρN , ā
ρ
N ) with

0 < aρN , ā
ρ
N ≤ aρN <∞. (c) The matrix IN − ρNW is non singular for all ρN ∈ (−aρN , ā

ρ
N ).

Assumption 4 The row and column sums of the sequences of matrices WN and
(IN − ρWN )−1 are bounded uniformly in absolute value.
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ρ
N ).

Assumption 4 The row and column sums of the sequences of matrices WN and
(IN − ρWN )−1 are bounded uniformly in absolute value.

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 12 / 73



Hypotheses 1

More specifically, the interaction matrix and the autoregressive parameter are generally assumed
to satisfy the following assumptions (Lee, 2004).

Assumption 1 (a) The disturbances {εi,N : 1 ≤ i ≤ N,N ≥ 1} are identically distributed.
Moreover, for each sample size N, they are jointly independently distributed with
E(εi,N ) = 0 and E(ε2

i,N ) = σ2
ε,N , where 0 < σ2

ε,N < b with b <∞. (b) Finally, E(|εi,N |4+η)

for some η > 0 exists, that is, a moment higher than the fourth exists.

Assumption 2 The elements of XN are uniformly bounded constants, XN has the full rank
k , and limN→∞(1/N)X ′NXN exists and is non singular.

Assumption 3 (a) All diagonal elements of WN are zero. (b) ρN ∈ (−aρN , ā
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Hypotheses 2

Let AN be a square matrix, we say that the row and column sums of the sequences of
matrices AN is bounded uniformly in absolute value if there exists a constant c <∞ that
does not depend on N such that:

‖AN‖∞ = max
1≤i≤n

N∑
j=1

|aij,N | < c, ‖AN‖1 = max
1≤j≤n

N∑
i=1

|aij,N | < c, for all N

Note that this condition is identical to the condition that the sequences of the maximum row
sum matrix norms ‖AN‖∞ and the maximum column sum matrix norms ‖AN‖1 are
bounded Horn and Johnson (1985, p. 294-295).

Under this set of assumptions, Lee (2004) proofs consistency, asymptotic normality and
efficiency of the Quasi Maximum Likelihood estimators.
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Discussion 1: Triangular arrays

Assumption 1 allows the error term to depend on the sample size N, i.e. to form
triangular arrays. Note that even if the error term does not depend on N, the elements of
yN would still depend on N since the elements of the inverse of IN − ρNWN would
generally depend on N. A triangular array (tableau triangulaire) of random variables is a
doubly indexed sequence in which each row (column) is only as long as the row’s
(column’s) index. For example, the first element of the vector y will be different if N = 10
and N = 15. This implies that these elements and the vector y should be indexed by N:

yN = (y1N , y2N , . . . , yNN )

Our samples for y for N = 1, 2, 3, . . . are then (in rows):

N = 1 y11
N = 2 y12 y22
N = 3 y13 y23 y33
. . . . . .

where y11 6= y12 6= y13, y22 6= y23 etc.
The triangular nature of the variables, which leads to certain statistical problems, especially
concerning the asymptotic properties of the maximum likelihood estimators, has, as far as
we know, only been recognized by (Kelejian and Prucha 1998) or (Lee 2002).
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Discussion 2

Assumption 2: The nonstochastic nature of XN and its uniform boundedness conditions
are for simplicity. They can be relaxed without any problem: if the elements of XN are
stochastic and have unbounded ranges, conditions in Assumption 2 can be replaced by
some finite moment conditions.

Assumption 3 and 4 deserve some particular attention as they are properly specific
to spatial regression models.

Assumption 3(a) is clearly a normalization rule: it implies that no unit is viewed as
its own neighbor.
Assumption 3(b) underlines that the autoregressive parameter ρ depends on the
sample size N as underlined by Kelejian and Prucha (2010). It also defines the
parameter space for ρN as an interval around zero such that (IN − ρNWN ) is
non-singular for values of ρN in that interval.
Assumption 3(c) ensures that yN is uniquely defined in the reduced form equation.
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Discussion 3: Variance-covariance matrix

Assumptions 3 and 4 imply that the row and column sums of the variance-covariance
matrix of yN in equation (10) are uniformly bounded in absolute value, thus limiting the
degree of correlation between the elements of yN .

Indeed if AN and BN are two matrices conformable for multiplication and whose row and
column sums are uniformly bounded in absolute value. Then the row and column sums of
ANBN are also uniformly bounded in absolute value (Kelejian and Prucha p. 516, 1999).

The extent of correlation is limited in virtually all large sample analysis. Making an analogy
to the time series literature, these assumptions ensure that the process for the dependent
variable exhibit a fading memory.

Illustration: let {Xi}, i = 1, ...,N be a random sample, where E(Xi ) = µ, V(Xi ) = σ2 for
all i and cov(Xi ,Xj ) = aσ2 with 0 < a < 1 for i 6= j . Consider now the sample mean: X̄N ,

then clearly E(X̄N ) = µ, but V(X̄N ) = σ2

N2 [N2a + N(1− a)] and limN→∞ V(X̄N ) = aσ2 6= 0.
Therefore, X̄N is not consistent in mean square. For X̄N to be consistent in mean square,
the extent of correlation must be limited so as its variance goes to zero when the sample
size goes to infinity, which implies that the covariances go to zero for large |i − j|.
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Discussion 4: Interaction matrices

In practice, interactions matrices, specially spatial weight matrices, are often specified to
be row normalized.

In many of these cases, no spatial unit is assumed to be a neighbor to more than a given
number q of other spatial units. That is, for every j the number of wij 6= 0 is less than or
equal to q.

In other words, each spatial unit has a limited number of neighbors regardless of the
sample size N. Clearly, in such cases, the spatial weight matrix WN is sparse for large N
and Assumption 3 is satisfied.

Also, in other cases, the spatial weight matrix does not contain zeros, but the weights are
formulated such that they decline rapidly as a function of some measure of distance
between neighbors. Again, in such cases Assumption 3 will typically be satisfied for WN .
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Parameter space: Motivations 1

Assumption 3(b) defines the parameter space for the autoregressive parameter.

In the existing literature the parameter space for the autoregressive parameter is typically
taken to be the interval (−1, 1), or a subset thereof, and the autoregressive parameter is
assumed not to depend on the sample size.

However, in applications it is typically found that for un-normalized interaction matrices,
IN − ρNWN is singular for some values of ρ ∈ (−1, 1).

To avoid this situation, many applied researchers normalize each row of their interaction
matrices in such a way that IN − ρNWN is non-singular for all ρ ∈ (−1, 1).

Let us now discuss the implications of various normalizations of the interaction matrix.
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Parameter space: Motivations 2

Suppose cN denotes a scalar normalization factor. Clearly, this normalization factor may
depend on the sample size N.

For example, some of our results below relate to the case in which cN corresponds to the
maximal row or column sum of the absolute values of the elements of WN .

Given such a normalizing factor, an equivalent specification for yN is obtained if ρNWN is
replaced by ρ∗NW∗N where ρ∗N = cNρN and W∗N = WN/cN .

It is important to observe that even if ρN and its corresponding parameter space do not
depend on N, ρ∗N and its implied parameter space will depend on the sample size as a
result of the normalization of the interaction matrix.

It is for this reason that we allow in Assumption 3 for the elements of the interaction
matrices, and the autoregressive parameters and the corresponding parameter spaces to
depend on N. Of course, Assumption 3 also covers the case where the true data
generating process corresponds to a model where autoregressive parameters do not
depend on N.
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Parameter space: Theorem 1

Having defined in Assumption 3, the parameter space for ρ as an interval around zero such
that (IN − ρW ) is non-singular for values of ρ in that interval, the following Theorem gives
the bounds for that interval.

Theorem 1 (Kelejian and Prucha, 2010, p. 56)
Let τ denote the spectral radius of W , i.e.,

τ = max{|ν1|, ..., |νN |}

where |ν1|, ..., |νN | denote the modulus of the eigenvalues of W . Then (IN − ρW ) is
nonsingular for all values of ρ in the interval (−1/τ, 1/τ).

Proof
Consider that for ρ 6= 0, det(IN − ρW ) = det[(−ρ)(W − 1

ρ
IN )] = (−ρ)N det(W − 1

ρ
IN ).

Consequently (IN − ρW ) is non singular for values of ρ−1 /∈ {ν1, ..., νN}, i.e. if ρ−1 is not
an eigenvalue of W . In particular (IN − ρW ) is nonsingular for |ρ−1| > τ . Rewriting the
last inequality as |ρ| < τ−1 completes the proof.
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Parameter space: Theorem 2

Theorem 2 (Kelejian and Prucha, 2010, p.56)
Let

r = max
1≤i≤N

N∑
j=1

|wij |, c = max
1≤j≤N

N∑
i=1

|wij |

and let
τ∗ = min (r , c)

Then τ ≤ τ∗ and consequently IN − ρW is non-singular for all values of ρ in the interval
(−1/τ∗, 1/τ∗).

Proof
Note first that r is the maximum row sum matrix norm and c is the maximum column sum
matrix norm of W . As an immediate consequence of Gershgorin’s Theorem (Horn and
Johnson, 1985, p. 344-346): the spectral radius is the greatest lower bound for the values
of all matrix norms of W . We then have τ = max{|ν1|, ..., |νN |} ≤ τ∗. The result now
follows from Theorem 1.
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Parameter space: Remarks

Note however that the specification of the parameter space is here somewhat more
restrictive than the previous one, i.e. (−1/τ∗, 1/τ∗) ⊂ (−1/τ, 1/τ).

Note that if |ρ| < 1
τ∗ or 1

τ
, (IN − ρW )−1 can be expanded into an infinite series as:

(IN − ρW )−1 = IN + ρW + ρ2W 2 + ...+ ρr W r + ... =
∞∑

r=0

ρr W r (13)

It is possible to consider the specification of the parameter space for ρ in some special
cases such as when W is a row normalized interaction matrix or when W is a symmetric,
not row normalized interaction matrix.
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Parameter space
Row normalized W matrix 1

Theorem
If W is a row normalized interaction matrix, then (IN − ρW )−1 exists for all |ρ| < 1.

Proof 1
Consider the case where W is normalized to have row sums of unity. All the eigenvalues of
the row normalized W matrix are then less than 1: indeed, in this case r = 1, then |νi | ≤ 1
for all i . Using Theorem 2, (IN − ρW ) is nonsingular for all values of ρ in the interval
(−1, 1).

Proof 2
Alternatively, let us prove this result using Gershgorin’s Theorem.
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Parameter space
Row normalized W matrix 2

Gershgorin’s Theorem
Let A be a (N × N) square matrix with elements aij . Let

Ri =
N∑

j=1,j 6=i

|aij |, Cj =
N∑

i=1,i 6=j

|aij |

Then each eigenvalue of A lies in at least one of the N circles

|ν − aii | ≤ Ri , i = 1, ...,N

and hence in the union of these circles. Also each eigenvalue of A lies in at least one of the
N circles, and hence in their union

|ν − ajj | ≤ Cj , j = 1, ...,N

Proof 2
Consider now W which has wij ≥ 0 and wii = 0 and let

r = max
i

N∑
j=1

wij = max
i

Ri , c = max
j

N∑
i=1

wij = max
j

Cj ,

Then the eigenvalues of W satisfy for i = 1, ...,N: |νi | ≤ r , |νi | ≤ c. If W is row
normalized, r = 1 and so |νi | ≤ 1.
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Parameter space
Row normalized W matrix 3

Next, let Q be a nonsingular matrix that triangularize W as follows:

QWQ−1 = Gν , Gν =

 ν1 . . . ∗
...

. . .
...

0 . . . νN


This is always possible, e.g. Gν may represent the Jordan normal form (Horn and Johnson
1985, p.119-128). Then

det(IN − ρW ) = det(Q−1Q(IN − ρW )) = det(Q(IN − ρW )Q−1)

= det(QQ−1 − ρQWQ−1) = det(Q−1Q − ρGν) = det(IN − ρGν)

= (1− ρν1)(1− ρν2) . . . (1− ρνN ) = ΠN
i=1(1− ρνi )

and det(IN − ρW ) 6= 0 for any |ρ| < 1, since |ρνi | ≤ |ρ| < 1.

Moreover it is clear that det(IN − ρW ) > 0 for any |ρ| < 1, meaning that IN − ρW is definite
positive with all eigenvalues strictly positive.
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Parameter space
Not row normalized W matrix

If W is not row normalized IN − ρW will generally be singular for certain values of |ρ| < 1.
Then using Theorems 1 or 2 it is always possible to normalize the interaction matrix in
such a way that the inverse of IN − ρW will exist in an easily established region.

Consider for exemple the following model where W is not row normalized:

y = ρWy + Xβ + ε = ρ∗W∗y + Xβ + ε (14)

where ρ∗ = τ∗ρ, W∗ = W
τ∗ and τ∗ = min(r , c) defined in Theorem 2. Note that

|IN − ρ∗W∗| 6= 0 for:

|ρ∗| <
1

min ( r
τ∗ ,

c
τ∗ )

=
1

1
τ∗ min (r , c)

= 1 (15)

So if the model is normalized using τ∗ and ρ∗ is taken to be the parameter,
(IN − ρ∗W∗)−1 exists for all |ρ∗| < 1. One would then estimate ρ∗ as a parameter, and
since ρ∗ = τ∗ρ, one would estimate ρ as ρ̂ = ρ̂∗/τ∗.

We could also use τ , the spectral radius of W , defined in Theorem 1, for an alternative
normalization. Note however that τ∗ is much easier to compute than τ , especially for large
sample sizes.
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Parameter space
Symmetric not row normalized W matrix

Theorem
Consider the case where W is symmetric, all the eigenvalues of W are then real. Assume
that W is not row normalized. Let νmax and νmin be the largest and the smallest
eigenvalues of W. Assume as will typically be case if all the eigenvalues of W are real, that
νmax > 0 and νmin < 0. Then (IN − ρW ) is nonsingular for all values of ρ in the interval
(ν−1

min, ν
−1
max ).

Proof
If ρ = 0, (IN − ρW ) is nonsingular. If ρ 6= 0 we have:

|IN − ρW | = (1− ρν1)(1− ρν2) . . . (1− ρνN ) = ΠN
i=1(1− ρνi )

so (IN − ρW ) is nonsingular unless ρ is equal to the inverse of an eigenvalue
ν−1

1 , ν−1
2 . . . ν−1

N , i.e ρ−1 is equal to an eigenvalue. Thus (IN − ρW ) is nonsingular if
ρ−1 < νmin or ρ > ν−1

min and ρ−1 > νmax or ρ < ν−1
max and therefore if ρ ∈ (ν−1

min, ν
−1
max )
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Parameter space
Symmetric not row normalized W matrix
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Parameter space
Symmetric not row normalized W matrix

Consider now the normalization by τ of a symmetric not row-normalized matrix W . As all
the eigenvalues of this matrix are real so that νmax > 0 and νmin < 0. We know that
(IN − ρW ) is nonsingular for all values of ρ in the interval (1/νmin, 1/νmax ).

Consider ρ∗ = τρ and W∗ = W/τ , eigenvalues of the normalized matrix W∗ are given by
ν∗ = ν/τ and (IN − ρ∗W∗) is nonsingular for all values of ρ∗ in the interval
(τ/νmin, τ/νmax ).

Suppose that |νmax | > |νmin|, then the previous interval becomes (νmax/νmin, 1). Suppose
now that |νmax | < |νmin|, then τ = |νmin| and the previous interval becomes
(−1, |νmin|/νmax ). Note that those two intervals are less restrictive than the interval
(−1, 1): (−1, 1) ⊂ (νmax/νmin, 1) and (−1, 1) ⊂ (−1, |νmin|/νmax ).
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Parameter space: Special Cases 1

Similarity
Recall that a Matrix B is said to be similar to a matrix A if there exist a nonsingular matrix S
such that B = S−1AS. Note also that if A and B are similar, then they have the same
eigenvalues, counting multiplicity (Horn and Johnson 1985, p.44-45)
Consider the case where the row normalized matrix is computed from a symmetric matrix,
the row normalized matrix is no more symmetric and may have complex eigenvalues.
However in this case, it will have the same real eigenvalues and determinant as a similar
symmetric matrix.
Theorem
For symmetric matrices similar to row normalized matrices where νmax = 1, (IN − ρW ) is
nonsingular for all values of ρ in the interval (ν−1

min, 1).
Proof
Consider R = IN − ρDW , where DW is row normalized and non-symmetric. However, in
this case DW has the same real eigenvalues as the symmetric but not row normalized
matrix D1/2WD1/2. Consider the similarity transformation:

D−1/2RD1/2 = D−1/2(IN − ρDW )D1/2 = IN − ρD−1/2DWD1/2 = IN − ρD1/2WD1/2

Then IN − ρDW and IN − ρD1/2WD1/2 have then the same real eigenvalues and
determinant. As DW is row normalized νmax = 1 and IN − ρD1/2WD1/2 is nonsingular for
all values of ρ in the interval (ν−1

min, 1).
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Consider the case where the row normalized matrix is computed from a symmetric matrix,
the row normalized matrix is no more symmetric and may have complex eigenvalues.
However in this case, it will have the same real eigenvalues and determinant as a similar
symmetric matrix.
Theorem
For symmetric matrices similar to row normalized matrices where νmax = 1, (IN − ρW ) is
nonsingular for all values of ρ in the interval (ν−1

min, 1).
Proof
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Parameter space: Special Cases 2

Strictly diagonally dominant matrix
Consider again R = IN − ρDW where DW is row normalized and non-symmetric and
|ρ| < 1, then R is strictly diagonally dominant. This means that the diagonal element of R
(which equals 1) strictly exceeds the sum of the other elements in the row (which equals ρ
since W is row normalized). Strictly diagonally dominant matrices are invertible, therefore
R is invertible.

Consider the case where W has complex eigenvalues:
W is row normalized and is not similar to a symmetric matrix. If a real matrix has complex
eigenvalues, these come in complex conjugate pairs. Consider the determinant of
IN − ρW :

det(IN − ρW ) = ΠN
i=1(1− ρνi ) = [ΠN

i=3(1− ρνi )](1− ρν1)(1− ρν2)

where, without loss of generality, one of the complex conjugate pairs of eigenvalues
appears in ν1 and the other in ν2. If the product (1− ρν1)(1− ρν2) equals 0, this would
lead to a zero determinant which would imply that (IN − ρW ) is singular. The question is
then what values of ρ could lead to a singular (IN − ρW )? Let ν1 = r + ic and ν2 = r − ic
where r is the real part of ν1 and ν2, c is the imaginary part of ν1 and ν2 and i is the
square root of −1, so that i2 = −1. Assume that c 6= 0.
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Parameter space: Special Cases 3

Consider now:
(1− ρν1)(1− ρν2) = 0

(1− ρr − ρic)(1− ρr + ρic) = 0

1− 2ρr + ρ2r2 − ρ2i2c2 = 0

1− 2ρr + ρ2(r2 + c2) = 0

(16)

The discriminant of this quadratic equation in ρ is d = −4c2 < 0. Therefore the quadratic
equation will have two complex roots. This means that a real ρ cannot result as a root of
this quadratic equation. In other words, complex conjugate eigenvalues do not affect
whether (IN − ρW ) is singular. Only pure real eigenvalues can affect the singularity of
(IN − ρW ).

Consequently, for W with complex eigenvalues, the interval for ρ which guarantees the non
singularity of (IN − ρW ) is (1/νmin, 1) where νmin is here the most negative purely real
eigenvalue of W (LeSage and Pace, 2009, p.88-89).
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Parameter space
Definite positiveness of (I − ρW )

We know that:
det(IN − ρW ) = ΠN

i=1(1− ρνi )

It is straightforward to see that det(IN − ρW ) > 0 if |ρ| < 1/τ , where
τ = max{|ν1|, ..., |νN |} as defined in Theorem 1, as well as if |ρ| < 1/τ∗ where
τ∗ = min (r , c) with r = max1≤i≤N

∑N
j=1 |wij | and c = max1≤j≤N

∑N
i=1 |wij | as defined in

Theorem 2. It will also be the case if W is a row normalized matrix with |ρ| < 1 as in
Theorem 3.
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Estimation of the SAR model

Let us consider again the first order Spatial Autoregressive Model SAR:

y = ρWy + Xβ + ε

The variance-covariance matrix for y is easily seen to be equal to:

V(y) = σ2(IN − ρW )−1(IN − ρW ′)−1 (17)

Note that, in general, this matrix will be full and it’s main diagonal will not be constant,
inducing complete heteroscedasticity.

It also follows from the reduced form (8) that the spatially lagged variable Wy is, in general,
correlated with the error term since:

E [(Wy)′ε] = σ2 tr W (IN − ρW )−1 6= 0 (18)

Therefore OLS estimators will be inconsistent. The simultaneity embedded in the Wy term
must be explicitly accounted for in a maximum likelihood estimation framework, as first
outlined by Ord (1975).

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 33 / 73



Estimation of the SAR model

Let us consider again the first order Spatial Autoregressive Model SAR:

y = ρWy + Xβ + ε

The variance-covariance matrix for y is easily seen to be equal to:

V(y) = σ2(IN − ρW )−1(IN − ρW ′)−1 (17)

Note that, in general, this matrix will be full and it’s main diagonal will not be constant,
inducing complete heteroscedasticity.

It also follows from the reduced form (8) that the spatially lagged variable Wy is, in general,
correlated with the error term since:

E [(Wy)′ε] = σ2 tr W (IN − ρW )−1 6= 0 (18)

Therefore OLS estimators will be inconsistent. The simultaneity embedded in the Wy term
must be explicitly accounted for in a maximum likelihood estimation framework, as first
outlined by Ord (1975).

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 33 / 73



Estimation of the SAR model

Let us consider again the first order Spatial Autoregressive Model SAR:

y = ρWy + Xβ + ε

The variance-covariance matrix for y is easily seen to be equal to:

V(y) = σ2(IN − ρW )−1(IN − ρW ′)−1 (17)

Note that, in general, this matrix will be full and it’s main diagonal will not be constant,
inducing complete heteroscedasticity.

It also follows from the reduced form (8) that the spatially lagged variable Wy is, in general,
correlated with the error term since:

E [(Wy)′ε] = σ2 tr W (IN − ρW )−1 6= 0 (18)

Therefore OLS estimators will be inconsistent. The simultaneity embedded in the Wy term
must be explicitly accounted for in a maximum likelihood estimation framework, as first
outlined by Ord (1975).

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 33 / 73



Estimation of the SAR model
Log-likelihood function

Under the additional hypothesis of normality of the error term, ε ∼ N(0, σ2
ε IN ) , the

log-likelihood function for the SAR model is given by:

ln L(β′, ρ, σ2
ε) = −

N
2

ln(2π)−
N
2

ln(σ2
ε) + ln |I − ρW |

−
1

2σ2
ε

[(I − ρW )y − Xβ]′ [(I − ρW )y − Xβ] (19)

An important aspect of this log-likelihood function is the Jacobian of the transformation,
which is the determinant of the (N × N) full matrix (IN − ρW ) for our model.

Recall that moving from the likelihood for the Normal error vector to the likelihood for the
observed dependent variable, the Jacobian of the transformation needs to be inserted. In
the SAR model, this corresponds to:∣∣∣∣ ∂ε∂y

∣∣∣∣ =

∣∣∣∣∂(y − ρWy − Xβ)

∂y

∣∣∣∣ = |IN − ρW | (20)
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Estimation of the SAR model
First order conditions

Note that this Jacobian reduces to a scalar 1 in the standard regression model, since
|∂(y − Xβ)/∂y | = |IN | = 1. Maximizing the log-likelihood function (19) is therefore not
equivalent to minimizing weighted least squares, i.e. the last term in the log-likelihood
function, as in the standard linear regression model since it ignores the Jacobian term.

The log-Jacobian also implies constraints on the parameter space for ρ, which must be
such that |IN − ρW | > 0.

Let us write the usual first order conditions for the maximization of the log-likelihood
function (19):

∂ ln L
∂β′

= X ′(IN − ρW )y − X ′Xβ = 0 (21)

∂ ln L
∂ρ

= − tr[W (IN − ρW )−1] +
1
σ2
ε

[(IN − ρW )y − Xβ]′Wy = 0

∂ ln L
∂σ2
ε

= −
N
σ2
ε

+
1
σ4
ε

[(IN − ρW )y − Xβ]′[(IN − ρW )y − Xβ] = 0
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Estimation of the SAR model
More on the Jacobian problem

Note that here we have used the following result to compute the partial derivative of the
determinant of I − ρW with respect to ρ:

∂ln|IN − ρW |
∂ρ

= tr(IN − ρW )−1 ∂(IN − ρW )

∂ρ
(22)

= tr(IN − ρW )−1(−W )

= − tr[W (IN − ρW )−1]

The presence of the Jacobian term could complicate the computation of the maximum
likelihood estimators which involves the repeated evaluation of this determinant. However
Ord (1975) suggests that it can be expressed as a function of the eigenvalues ωi of the
spatial weights matrix W :

|IN − ρW | =
N∏

i=1

(1− ρωi ) =⇒ ln |IN − ρW | =
N∑

i=1

ln(1− ρωi ) (23)

This expression simplifies considerably the computations since the eigenvalues of W have
to be computed only once at the outset of the numerical optimization procedure.
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Estimation of the SAR model
ML estimators given ρ

From the usual first-order conditions, the maximum likelihood estimators of β and σ2, given
ρ, are obtained as:

β̂ML(ρ) = (X ′X)−1X ′(I − ρW )y (24)

σ̂2
ML(ρ) =

1
N

[
(I − ρW )y − X β̂ML(ρ)

]′ [
(I − ρW )y − X β̂ML(ρ)

]
(25)

Note that, for convenience:
β̂ML(ρ) = β̂O − ρβ̂L (26)

where β̂O = (X ′X)−1X ′y and β̂L = (X ′X)−1X ′Wy . Define êO = y − X β̂O and
êL = Wy − X β̂L, it can be then easily seen that:

σ̂2
ML(ρ) =

[
(êO − ρêL)′(êO − ρêL)

N

]
(27)
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Estimation of the SAR model
Concentrated log-likelihood function

Substitution of (26) and (27) in the log-likelihood function (19) yields a concentrated
log-likelihood as a non-linear function of a single parameter ρ:

ln L(ρ) = −
N
2

[ln(2π) + 1] +
N∑

i=1

ln(1− ρωi )−
n
2

ln
[

(êO − ρêL)′(êO − ρêL)

N

]

where êO and êL are the estimated residuals in a regression of y on X and Wy on X ,
respectively.
A maximum likelihood estimate for ρ is obtained from a numerical optimization of the
concentrated log-likelihood function.

The estimation procedure can then be described as follows:
We begin by first regressing by OLS y on X which yields β̂O and Wy on X which
yields β̂L.
We then compute the estimated residuals êO and êL.
Given those, we maximize, using a numerical nonlinear optimization routine, the
concentrated log-likelihood function to find ρ̂ML, until the numerical convergence
criterion is met.
Given ρ̂ML we can then compute β̂ML = β̂O − ρ̂β̂L and
σ̂2

ML = [(1/N)(êO − ρ̂êL)′(êO − ρ̂êL)].
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concentrated log-likelihood function.

The estimation procedure can then be described as follows:
We begin by first regressing by OLS y on X which yields β̂O and Wy on X which
yields β̂L.
We then compute the estimated residuals êO and êL.
Given those, we maximize, using a numerical nonlinear optimization routine, the
concentrated log-likelihood function to find ρ̂ML, until the numerical convergence
criterion is met.
Given ρ̂ML we can then compute β̂ML = β̂O − ρ̂β̂L and
σ̂2

ML = [(1/N)(êO − ρ̂êL)′(êO − ρ̂êL)].
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Estimation of the SAR model
Asymptotic variance-covariance matrix

Under the regularity conditions described for instance in Lee (2004, p.1902-1904), it can
be shown that the maximum likelihood estimators have the usual asymptotic properties,
including consistency, normality, and asymptotic efficiency.

The asymptotic variance-covariance matrix follows as the inverse of the information matrix.
Defining WA = W (I − ρW )−1 to simplify notation, we have then:
AsyVar[β′, ρ, σ2] =

1
σ2 X ′X 1

σ2 (X ′WAXβ)′ 0
1
σ2 X ′WAXβ tr

[
(WA + W ′A)WA

]
+ 1
σ2 (WAXβ)′(WAXβ) 1

σ2 trWA

0 1
σ2 trWA

n
2σ4


−1

The estimated asymptotic variance-covariance matrix will then be used for asymptotic
inference on the parameters under the regularity conditions.
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SEM specification: the spatial error model
Reduced form

Let us consider the following cross section regression model with spatially autocorrelated
errors:

y = Xβ + ε ε = λWε+ u (28)

Reduced form
If IN − λW is invertible,noting that ε = (IN − λW )−1u, the reduced form of the SEM
specification is obtained as:

y = Xβ + (IN − λW )−1u (29)

This reduced form implies that a random shock in a specific cross-sectional unit i does not
only affect the value of the dependent variable in the same unit, but also has an impact on
the values of dependent variable in all other cross-sectional units through the inverse
spatial transformation (IN − λW )−1. This is the so-called spatial “diffusion” process of
random shocks. The SEM specification shares this property with the SAR model, but does
not share the global spatial multiplier effect that we highlighted for the SAR process.
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SEM specification: the spatial error model
Constrained Spatial Durbin Model

Note that this model may also be interpreted as a constrained Spatial Durbin Model:

(IN − λW )y = (IN − λW )(β0ιN + Xβ) + u (30)

y = (IN − λW )β0ιN + λWy + Xβ − λWXβ + u (31)

Using a row-normalized interaction matrix W , one gets:

y =
β0

1− λ
ιN + λWy + Xβ − λWXβ + u (32)

which is a Spatial Durbin Model:

y =
β0

1− λ
ιN + λWy + Xβ + WXγ + ε (33)

with non linear constraints γ = −λβ.
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SEM specification: the spatial error model
Spatial filter and variance-covariance matrix

Spatial filter
If λ was known, we could filter out spatial autocorrelation from both of y and X and then
use the classical regression model as follows:

(IN − λW )y = (IN − λW )Xβ + u (34)

Of course λN is usually unknown and has to be estimated as well as βN and σ2
u,N .

Variance-covariance matrix
Assuming that X is non stochastic, the mathematical expectation of y is trivially
E(y) = Xβ. Its variance-covariance matrix is in turn obtained as:

V(y) = V(ε) = σ2
u(IN − λW )−1(IN − λW )′−1 = σ2

uΩε(λ) (35)

This is exactly the result we obtained for the SAR model. Note again that in general, this
matrix will be full and it’s main diagonal will not be constant. Thus spatial autocorrelation in
the error term induces complete heteroscedasticity. This a case of non spherical error
term, where OLS estimators are consistent but inefficient.

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 42 / 73



SEM specification: the spatial error model
Spatial filter and variance-covariance matrix

Spatial filter
If λ was known, we could filter out spatial autocorrelation from both of y and X and then
use the classical regression model as follows:

(IN − λW )y = (IN − λW )Xβ + u (34)

Of course λN is usually unknown and has to be estimated as well as βN and σ2
u,N .

Variance-covariance matrix
Assuming that X is non stochastic, the mathematical expectation of y is trivially
E(y) = Xβ. Its variance-covariance matrix is in turn obtained as:

V(y) = V(ε) = σ2
u(IN − λW )−1(IN − λW )′−1 = σ2

uΩε(λ) (35)

This is exactly the result we obtained for the SAR model. Note again that in general, this
matrix will be full and it’s main diagonal will not be constant. Thus spatial autocorrelation in
the error term induces complete heteroscedasticity. This a case of non spherical error
term, where OLS estimators are consistent but inefficient.

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 42 / 73



Estimation of the SEM
GLS and FGLS estimation

The GLS estimator is given by:

β̂GLS = [X ′Ω−1
ε (λ)X ]−1X ′Ω−1

ε (λ)y (36)

Clearly, this estimator would be BLUE if λ were known, we would have:

E(β̂GLS) = β and V(β̂GLS) = σ2
u [X ′Ω−1

ε (λ)X ]−1 (37)

Of course as λ is unknown, the GLS estimator is not feasible.
Nevertheless let’s have a closer look at this estimator:

β̂GLS = [X ′(IN − λW )′(IN − λW )X ]−1X ′(IN − λW )′(IN − λW )y

β̂GLS = [(X − λWX)′(X − λWX)]−1(X − λWX)′(y − λWy)

β̂GLS = (X ′LXL)−1X ′LyL

where XL = (IN − λW )X = X − λWX and yL = (IN − λW )y = y − λWy may be
interpreted as spatial counterparts to the Cochrane-Orcutt transformation in Times Series.
The GLS estimator is thus the OLS estimator on spatially filtered variables, if λ were
known.
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Estimation of the SEM
GLS and FGLS estimation

Using the feasible GLS estimator requires to have a consistent estimator for λ that could
be used to transform the model by the spatial Cochrane-Orcutt procedure and then
estimate β by OLS:

β̂FGLS = [X ′Ω−1
ε (λ̂)X ]−1X ′Ω−1

ε (λ̂)y (38)

β̂FGLS = (X̃ ′LX̃L)−1X̃ ′LỹL (39)

where X̃L = X − λ̂WX and ỹL = y − λ̂Wy .

The OLS estimator for β is consistent in the spatially autocorrelated error model, the errors
can then be estimated consistently. However the OLS estimator for λ in the SAR model for
the errors is not consistent as we previously showed, but Kelejian and Prucha (1998, 1999)
propose a consistent generalized moments estimator for λ.
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Maximum likelihood estimation of the SEM
Log-likelihood function

Consider again the spatial error model (SEM) under Assumptions 1-4 and under the
additional hypothesis of normality of the error term u ∼ N(0, σ2

u IN ):

y = Xβ + ε ε = λWε+ u (40)

We then have:
ε ∼ N(0, σ2

uΩε(λ)) and y ∼ N(Xβ, σ2
uΩε(λ)) (41)

Observing that |σ2
uΩε(λ)| = |σ2

u |N |I − λW |−2, the log-likelihood function for the SEM
model is then obtained as:

ln L(β′, λ, σ2
ε) = −

N
2

ln(2π)−
1
2

ln |σ2
uΩε(λ)| −

1
2σ2

u
(y − Xβ)′Ωε(λ)−1(y − Xβ)

ln L(β′, λ, σ2
ε) = −

N
2

ln(2π)−
N
2

ln(σ2
u) + ln |I − λW | (42)

−
1

2σ2
u

(y − Xβ)′Ωε(λ)−1(y − Xβ)
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Maximum likelihood estimation of the SEM
Log-likelihood function

Noting that Ωε(λ)−1 = (I − λW )′(I − λW ), the log-likelihood may then be written as
follows:

ln L(β′, λ, σ2
ε) = −

N
2

ln(2π)−
N
2

ln(σ2
u) + ln |I − λW |

−
1

2σ2
u

[(I − λW )(y − Xβ)]′ [(I − λW )(y − Xβ)]

ln L(β′, λ, σ2
ε) = −

N
2

ln(2π)−
N
2

ln(σ2
u) + ln |I − λW |

−
1

2σ2
u

[(I − λW )y − (I − λW )Xβ]′ [(I − λW )y − (I − λW )Xβ]

ln L(β′, λ, σ2
ε) = −

N
2

ln(2π)−
N
2

ln(σ2
u) + ln |I − λW | (43)

−
1

2σ2
u

[yL − XLβ]′ [yL − XLβ]

where XL = (IN − λW )X and yL = (IN − λW )y .
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Maximum likelihood estimation of the SEM
ML estimators given λ

Suppose now that λ is known, the first order conditions for β and σ2
u are:

∂ ln L
∂β′

= −
1

2σ2
u

(X ′LyL + 2βX ′LXL) = 0 (44)

∂ ln L
∂σ2

u
= −

N
σ2

u
+

1
σ4

u
(yL − XLβ)′(yL − XLβ) = 0 (45)

It follows that the maximum likelihood estimators for β and σ2
u , given λ, are obtained as:

β̂ML(λ) = (X ′LXL)−1X ′LyL (46)

σ̂2
ML(λ) =

1
N

(yL − XLβ)′(yL − XLβ) (47)
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Maximum likelihood estimation of the SEM
Concentrated log-likelihood function

Substitution of (46) and (47) in the log-likelihood function (43) yields a concentrated
log-likelihood function as a non-linear function of a single parameter λ:

ln L =
N
2

[1 + ln(2π)]−
N
2

ln
(

û′û
N

)
+

N∑
i=1

ln(1− λωi ) (48)

where û = yL − XLβ̂ML(λ), then û′û = y ′LYL − y ′LXL(X ′LXL)−1X ′LyL, where yL = y − λWy
and XL = X − λWX are the spatially filtered variables.

A maximum likelihood estimate for λ is obtained from a numerical optimization of the
concentrated log-likelihood function.
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Estimation of the SEM model
Maximum likelihood estimators

The estimation procedure is hence more complicated than for the SAR model since û in
the concentrated log-likelihood function is indirectly also a function of λ as β̂ is obtained for
a value for λ. Therefore a one-time optimization of the concentrated log-likelihood function
with respect to λ does not suffice to obtain ML estimates of all the unknown parameters.
An iterative approach is thus required. This would essentially alternate back and forth
between the estimation of λ conditional upon a vector of residuals u generated for a value
of β, and an estimation of β and σ2 conditional upon a value for λ until numerical
convergence is obtained.

This procedure can be described as follows.
We first regress y on X by OLS and compute the initial set of residuals
û = y − XβOLS .
Given û, we then find λ that maximizes the concentrated log-lokelihood function.
Given λ, we carry out FGLS that yields β̂FGLS .
We then compute a new set of residuals û = y − X β̂FGLS .
If the numerical convergence criterion is met, that is, if values for both the residuals
and β̂FGLS fail to change from one iteration to the next, given û and λ̂ML we compute
σ̂2

ML,
else we go back to the maximization of the concentrated log-likelihood function to
get a new λ.
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σ̂2

ML,
else we go back to the maximization of the concentrated log-likelihood function to
get a new λ.

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 49 / 73



Estimation of the SEM model
Maximum likelihood estimators

The estimation procedure is hence more complicated than for the SAR model since û in
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û = y − XβOLS .
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û = y − XβOLS .
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If the numerical convergence criterion is met, that is, if values for both the residuals
and β̂FGLS fail to change from one iteration to the next, given û and λ̂ML we compute
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Estimation of the SEM model
Asymptotic variance-covariance matrix

As for the SAR model, under the regularity conditions described for instance in Lee (2004,
p.1902-1904), it can be shown that the maximum likelihood estimators have the usual
asymptotic properties, including consistency, normality, and asymptotic efficiency.

The asymptotic variance-covariance matrix follows as the inverse of the information matrix.
Defining WB = W (I − λW )−1 to simplify notation, we have then:
AsyVar[β′, λ, σ2] =

(49)
1
σ2 X ′LXL 0 0

0 tr W 2
B + tr W ′BWB

1
σ2 trWB

0 1
σ2 trWB

n
2σ4


−1

Due to the block-diagonal form of the asymptotic variance matrix, knowledge of the
precision of λ does not affect the precision of the β estimates. Consequently, if the latter is
the primary interest, the complex inverse and trace expressions need not be computed.
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Spatial or interaction multipliers: Motivation 1
Impacts in the classical regression model

A simple cross-section no interaction model

yi = β0 +
K∑

k=1

βk xik + εi εi ∼ i.i.d .(0, σ2) i = 1, . . . ,N

Impact of a variation of xik on yi for k = 1, ...,K

∂yi

∂xik
= βk for all i

Impact of a variation of xjk on yi for k = 1, ...,K

∂yi

∂xj
= 0 for all j 6= i

⇒ No spatial spillover effect
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Spatial or interaction multipliers: Motivation 2
Impacts in the classical regression model

Stacking over all individuals i = 1, ...,N

y = β0ι+
K∑

k=1

βk xk + ε

Impact matrices for k = 1, ...K

∂y
∂x′k

=


∂y1
∂x1k

. . .
∂y1
∂xNk

...
. . .

...
∂yN
∂x1k

. . .
∂yN
∂xNk

 =


βk 0 . . . 0
0 βk 0 . . . 0
... 0

. . .
...

0 . . . 0 βk

 = INβk
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Spatial or interaction multipliers
Impacts in the Spatial Durbin Model

Let us consider the general case of the Spatial Durbin Model:

yi = β0 + ρ
N∑

j=1

wij yj +
K∑

k=1

xikβk +
K∑

k=1

wij zikγk + εi for i = 1, ...,N (50)

or in matrix form:
y = β0ιN + ρWy + Xβ + WZγ + ε (51)

where yN is the N × 1 vector of the dependent variable, WNyN is the spatially lagged
dependent variable, ιN is the N × 1 unit vector and X is the N × K matrix of the
explanatory variables; β is the K × 1 vector of the associated coefficients.

Note that Z may include explanatory variables not included in X , supposed affecting y only
through their spatial lag: Z may then be a N × (K + M) matrix Z = [X Z̃ ] where X is the
previous N × K matrix of the explanatory variables and Z̃ is the N ×M matrix of extra
explanatory variables not included in X which are supposed to affect y only through their
spatial lag. WZ is the (N × (K + M)) matrix of the spatially lagged explanatory variables
and γ is the (K + M)× 1 vector of the associated coefficients.
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Spatial or interaction multipliers
Impacts in the Spatial Durbin Model

Suppose for simplicity that Z only includes X , the model may then be written as follows:

y = β0ιN + ρWy +
K∑

k=1

(INβk + Wγk )Xk + ε (52)

and the reduced form is then:

y = (I − ρW )−1ιNβ0 +
K∑

k=1

(I − ρW )−1(INβk + Wγk )Xk + (I − ρW )−1ε (53)

Note that if W is row normalized then W qιN = ιN for q ≥ 0 and we have:

(IN − ρW )−1ιN = (IN + ρW + ρ2W 2 + . . .)ιN

= (1 + ρ+ ρ2 + . . .)ιN =
1

1− ρ
ιN (54)

y =
β0

1− ρ
ιN +

K∑
k=1

(IN − ρW )−1(INβk + Wγk )Xk + (IN − ρW )−1ε (55)
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Spatial or interaction multipliers
Partial derivatives: Impact matrix

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K :

∂y
∂X ′k

= Sk (W ) = (IN − ρW )−1(INβk + Wγk )

= (IN + ρW + ρ2W 2 + . . .)(INβk + Wγk )

where (IN − ρW )−1 is the so-called global spatial multiplier or global interaction multiplier.

Let us define, as the impact matrix associated to the k th explanatory variable, the N × N
matrix Sk (W ) = (IN − ρW )−1(INβk + Wγk ). Sk (W ) is a N × N full matrix whose
elements are:

Sk (W ) =


Sk (W )11 Sk (W )12 . . . Sk (W )1N
Sk (W )21 Sk (W )22 Sk (W )2N

...
...

. . .
...

Sk (W )N1 Sk (W )N2 . . . Sk (W )NN

 (56)
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Spatial or interaction multipliers
Impact matrix: Interpretations

The partial derivatives of yi relative to xik or xjk for i, j = 1, . . . ,N, j 6= i and for
k = 1, . . . ,K are then:

∂yi

∂xik
= Sk (W )ii ,

∂yi

∂xjk
= Sk (W )ij (57)

In general Sk (W )ii 6= 0 and Sk (W )ij 6= 0 for i, j = 1, . . . ,N, j 6= i and for k = 1, . . . ,K .

The diagonal elements of this matrix, diag(Sk (W )), represent the direct impacts including
“own spillover” effects, which are inherently heterogenous in presence of spatial
autocorrelation due to differentiated interaction terms in the W matrix.

This type of heterogeneity is called interactive heterogeneity, in opposition to standard
individual heterogeneity in panel data models (Debarsy and Ertur, 2010).

The off-diagonal elements of the impact matrix represent indirect impacts: they are
collected in the matrix Qk (W ) = Sk (W )− diag(Sk (W )).
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“own spillover” effects, which are inherently heterogenous in presence of spatial
autocorrelation due to differentiated interaction terms in the W matrix.

This type of heterogeneity is called interactive heterogeneity, in opposition to standard
individual heterogeneity in panel data models (Debarsy and Ertur, 2010).

The off-diagonal elements of the impact matrix represent indirect impacts: they are
collected in the matrix Qk (W ) = Sk (W )− diag(Sk (W )).
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Spatial or interaction multipliers
Impact matrix: Interpretations

Note that the own derivative for country i includes the feedback effects where country i
affects country j and country j also affects country i as well as longer paths which might go
from country i to j to k and back to i .

The magnitude of those direct effects will depend on: (1) the degree of interaction between
countries, which is governed by the W matrix, (2) the parameter ρ, measuring the strength
of spatial correlation between countries and (3) the parameter βk .

Note also that the magnitude of pure feedback effects are then given by Sk (W )ii − βk ,
where βk could be interpreted as representing the direct impact of the explanatory variable
if there was no spatial autocorrelation, i.e. if ρ was equal to zero.
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Spatial or interaction multipliers
Column interpretation

Moreover, considering column j , we note that a variation ∆xjk of the k th explanatory
variable in spatial unit j differently affects each of the spatial units of the sample:

Sk (W )1j
Sk (W )2j

...
Sk (W )jj

...
Sk (W )Nj


The sum down the j th column yields the total impact on yi (i = 1, ...,N) for all the N spatial
units of the sample of a change of xjk in spatial unit j .
The total impacts, direct and indirect, from each of the units j = 1, ...,N are then collected
in the row vector ι′NSk (W ).
However it may be of interest to distinguish direct and indirect effects in applied papers
where the direct impacts are actually higher than each of the indirect impacts and
potentially higher than their sum (if the impact matrix is strictly diagonally dominant).
The total indirect impacts from each of the units j = 1, ...,N may then be usefully collected
in the row vector ι′NQk (W ).
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Spatial or interaction multipliers
Row interpretation

Considering row i , we note that an identical variation ∆Xk of the k th explanatory variable
across all the units of the sample differently affects spatial unit i :(

Sk (W )i1 Sk (W )i2 . . . Sk (W )ii . . . Sk (W )iN
)

The sum across the i th row represents the total impact on yi of an identical change of xjk
(j = 1, ...,N) across all the N spatial units in the sample.

The total impacts, direct and indirect, on each of the units i = 1, ...,N are then collected in
the column vector Sk (W )ιN .

Again the total indirect impacts on each of the units i = 1, ...,N may be collected in the row
vector Qk (W )ιN .

Of course, in both cases the corresponding elements of main diagonal of Sk (W ) may be
taken into account or not in those sums, depending on the inclusion or the exclusion of the
direct effects in those computations.
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Spatial or interaction multipliers
Scalar summaries

Given the complexity and the amount of the information available in such impact matrices,
LeSage and Pace (2009) suggest some useful summary scalar measures.

The average direct impact, including feedback effects, is defined as:

N−1 tr(Sk (W ))

whereas the average global impact is defined as:

N−1ι′NSk (W )ιN

where ιN is the N × 1 sum vector.

Finally the average indirect impact is, by definition, the difference between the average
global impact and the average direct impact:

N−1ι′NSk (W )ιN − N−1 tr(Sk (W )) = N−1ι′NQk (W )ιN
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Spatial or interaction multipliers: Special cases 1
The spatial autoregressive model (SAR)

Let us now consider the SAR specification, excluding the spatial lags of the explanatory
variables from the specification (ρ 6= 0, β 6= 0 and γ = 0), the partial derivatives of y
relative to Xk for k = 1, . . . ,K are then simply:

∂y
∂X ′k

= Sk (W ) = (IN − ρW )−1INβk = (IN + ρW + ρ2W 2 + . . .)INβk (58)

The diagonal elements of this impact matrix represent the direct effects including “own
spillover” effects whereas the off-diagonal terms represent indirect effects.
Note that in this special case, using a row-normalized interaction matrix W , since then
(IN − ρW )−1ιN = 1

1−ρ ιN , the total impacts on each of the units i = 1, ...,N collected in
the column vector Sk (W )ιN may be written as follows:

Sk (W )ιN = (IN − ρW )−1βk ιN =
βk

1− ρ
ιN

The average global impact of a variation of the k th explanatory variable simplifies then to:

N−1ι′NSk (W )ιN = N−1 βk

1− ρ
ι′N ιN =

βk

1− ρ
(59)
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Spatial or interaction multipliers: Special cases 2
The cross regressive model

Consider now the following simpler model, which does not include the spatially lagged
endogenous variable (ρ = 0) but includes exogenous variables together with spatially
lagged exogenous variables (β 6= 0 and γ 6= 0) which may be estimated by OLS under the
usual set of assumptions:

y = β0ιN +
K∑

k=1

(INβk + Wγk )Xk + ε (60)

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K :

∂y
∂X ′k

= Sk (W ) = INβk + Wγk (61)

Again, the diagonal elements of this impact matrix represent the direct effects whereas the
off-diagonal terms represent indirect effects. Contrary to the Spatial Durbin Model, here
the impacts are only local, coming from neighboring units, W playing the role of a local
spatial multiplier or local interaction multiplier.
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Spatial or interaction multipliers: Special cases 3
The spatially autocorrelated error model (SEM)

Let us finally consider the following regression model with spatially autocorrelated errors:

y = β0ιN + Xβ + ε ε = λWε+ u (62)

which may be written as follows:

y = β0ιN + Xβ + (IN − λW )−1u (63)

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K :

∂y
∂X ′k

= Sk (W ) = INβk (64)

which is exactly the same result as in the standard a-spatial regression model, where there
are no spatial spillovers.
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Spatial or interaction multipliers: Special cases 4
The constrained spatial Durbin model

Note that this model may also be interpreted as a constrained Spatial Durbin Model:

(IN − ρW )y = (IN − λW )(β0ιN + Xβ) + u (65)

y = (IN − ρW )β0ιN + λWy + Xβ − λWXβ + u (66)

As before, using a row-normalized interaction matrix W , one gets:

y =
β0

1− λ
ιN + λWy + Xβ − λWXβ + u (67)

which is the Spatial Durbin Model:

y =
β0

1− λ
ιN + λWy + Xβ + WXγ + ε (68)

with non linear constraints : γ = −λβ.
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Impact of a random shock
The spatial Durbin model

Reconsider the SDM model, in matrix form:

y = β0ιN + ρWy + Xβ + WXγ + ε (69)

the reduced form is then:

y = (I − ρW )−1ιNβ0 + (I − ρW )−1(Xβ + WXγ) + (I − ρW )−1ε (70)

This specification also implies that a shock affecting one unit propagates to all the other
units of the sample through the spatial transformation (I − ρW )−1.

Note that the derivative of y with respect to ε is:

∂y
∂ε′

= (I − ρW )−1 = (IN + ρW + ρ2W 2 + . . .) (71)

which is the so-called global spatial multiplier or the interaction multiplier.
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This specification also implies that a shock affecting one unit propagates to all the other
units of the sample through the spatial transformation (I − ρW )−1.

Note that the derivative of y with respect to ε is:

∂y
∂ε′

= (I − ρW )−1 = (IN + ρW + ρ2W 2 + . . .) (71)

which is the so-called global spatial multiplier or the interaction multiplier.
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Impact of a random shock
The spatial Durbin model

Let us define, as the impact matrix associated to the random shock, the (N × N) matrix
U(W ) = (IN − ρW )−1. U(W ) is a (N × N) full matrix whose elements are:

U(W ) =


U(W )11 U(W )12 . . . U(W )1N
U(W )21 U(W )22 U(W )2N

...
...

. . .
...

U(W )N1 U(W )N2 . . . U(W )NN

 (72)

The partial derivatives of yi relative to εi or εj for i, j = 1, . . . ,N, j 6= i are then:

∂yi

∂εi
= U(W )ii ,

∂yi

εj
= U(W )ij (73)

In general U(W )ii 6= 0 and U(W )ij 6= 0 for i, j = 1, . . . ,N, j 6= i .

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 66 / 73



Impact of a random shock
The spatial Durbin model

Let us define, as the impact matrix associated to the random shock, the (N × N) matrix
U(W ) = (IN − ρW )−1. U(W ) is a (N × N) full matrix whose elements are:

U(W ) =


U(W )11 U(W )12 . . . U(W )1N
U(W )21 U(W )22 U(W )2N

...
...

. . .
...

U(W )N1 U(W )N2 . . . U(W )NN

 (72)

The partial derivatives of yi relative to εi or εj for i, j = 1, . . . ,N, j 6= i are then:

∂yi

∂εi
= U(W )ii ,

∂yi

εj
= U(W )ij (73)

In general U(W )ii 6= 0 and U(W )ij 6= 0 for i, j = 1, . . . ,N, j 6= i .

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 66 / 73



Impact of a random shock
The spatial Durbin model

The diagonal elements of this matrix, diag(U(W )), represent the direct impacts of a unitary
random shock including “own spillover” effects.
Again those impacts are heterogenous due to differentiated interaction terms in the W
matrix.
The off-diagonal elements of the impact matrix represent indirect impacts of the unitary
random shock.
Note also that the own derivative for unit i includes as previously the feedback effects
where the unitary random shock on unit i affects unit j and unit j also affects unit i as well
as longer paths which might go from unit i to j to k and back to i .
The magnitude of those direct effects will now depend on: (1) the degree of interaction
between countries, which is governed by the W matrix and (2) the parameter ρ, measuring
the strength of spatial correlation between units.
The magnitude of pure feedback effects are given by U(W )ii − 1.
Considering column j , we note that an unitary random shock in spatial unit j differently
affects each of the spatial units of the sample.It represents the emission side of the spatial
diffusion process.
Considering row i , we note that unitary random shocks across all the units of the sample
differently affects spatial unit i . It represents the reception side of the spatial diffusion
process.
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Simulating the impacts of heterogenous random
shocks

Let ai be the magnitude of the shock affecting unit i and ε̂i be the (N × 1) vector containing
the estimated error of the model with a shock on the error term in unit i :

ε̂i = (ε̂1, ..., ε̂i + ai , ..., ε̂N )′ (74)

Therefore, the (N × 1) vector y i∗ of the simulated dependent variable with a shock in unit i
is:

y∗i = (I − ρ̂W )−1(ιN β̂0 + X β̂ + WX γ̂) + (I − ρ̂W )−1ε̂i (75)

y∗i = (I − ρ̂W )−1X̃ δ̂ + (I − ρ̂W )−1ε̂i (76)

where X̃ = [ιN X WX ], δ̂ = [β̂0 β̂ γ̂]′ and β̂0, β̂, γ̂ and ρ̂ are the Maximum Likelihood
estimates of the unknown parameters in equation (69).

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 68 / 73



Simulating the impacts of heterogenous random
shocks

Let ai be the magnitude of the shock affecting unit i and ε̂i be the (N × 1) vector containing
the estimated error of the model with a shock on the error term in unit i :

ε̂i = (ε̂1, ..., ε̂i + ai , ..., ε̂N )′ (74)

Therefore, the (N × 1) vector y i∗ of the simulated dependent variable with a shock in unit i
is:

y∗i = (I − ρ̂W )−1(ιN β̂0 + X β̂ + WX γ̂) + (I − ρ̂W )−1ε̂i (75)

y∗i = (I − ρ̂W )−1X̃ δ̂ + (I − ρ̂W )−1ε̂i (76)

where X̃ = [ιN X WX ], δ̂ = [β̂0 β̂ γ̂]′ and β̂0, β̂, γ̂ and ρ̂ are the Maximum Likelihood
estimates of the unknown parameters in equation (69).

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 68 / 73



Simulating the impacts of heterogenous random
shocks 2

Furthermore, let Y∗ be the (N × N) matrix where each column i represents the simulated
dependent variable for all units in the sample with a shock in unit i :

Y∗ = [y∗1 ... y∗n] = (I − ρ̂W )−1[X̃ δ̂ ... X̃ δ̂] + (I − ρ̂W )−1ε̂∗ (77)

where ε̂∗ = [ε̂1 ... ε̂N ] is a (N × N) matrix.

Given the definition of ε̂i , the matrix ε̂∗ can be rewritten as follows:

ε̂∗ =


ε̂1 + a1 ε̂1 . . . ε̂1
ε̂2 ε̂2 + a2 . . . ε̂2
...

...
. . .

...
ε̂N ε̂N . . . ε̂N + aN


ε̂∗ = ι′N ⊗ ε̂+ A (78)

where ιN is the unit vector of dimension N and A is a diagonal matrix of order N, whose i th
diagonal element corresponds to ai .

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 69 / 73



Simulating the impacts of heterogenous random
shocks 2

Furthermore, let Y∗ be the (N × N) matrix where each column i represents the simulated
dependent variable for all units in the sample with a shock in unit i :

Y∗ = [y∗1 ... y∗n] = (I − ρ̂W )−1[X̃ δ̂ ... X̃ δ̂] + (I − ρ̂W )−1ε̂∗ (77)

where ε̂∗ = [ε̂1 ... ε̂N ] is a (N × N) matrix.

Given the definition of ε̂i , the matrix ε̂∗ can be rewritten as follows:

ε̂∗ =


ε̂1 + a1 ε̂1 . . . ε̂1
ε̂2 ε̂2 + a2 . . . ε̂2
...

...
. . .

...
ε̂N ε̂N . . . ε̂N + aN


ε̂∗ = ι′N ⊗ ε̂+ A (78)

where ιN is the unit vector of dimension N and A is a diagonal matrix of order N, whose i th
diagonal element corresponds to ai .

Cem Ertur (Université d’Orléans) Spatial Econometric models November 2014 69 / 73



Simulating the impacts of heterogenous random
shocks 3

Therefore, we may write:

Y∗ = (I − ρ̂W )−1(ι′N ⊗ X̃ δ̂) + (I − ρ̂W )−1(ι′N ⊗ ε̂+ A) (79)

which may be also written:

Y∗ = ι′N ⊗ (I − ρ̂W )−1X̃ δ̂ + ι′N ⊗ (I − ρ̂W )−1(ε̂+ A) (80)

Finally, we compute the impact of a shock on unit i on all values of the dependent variable
by calculating the difference between the simulated dependent variable Y∗ and the matrix
of observed dependent variable Y = ι′N ⊗ y with y = (I − ρ̂W )−1(X̃ δ̂ + ε̂):

Y∗ − Y = (I − ρ̂W )−1A (81)

Note that when A = I we retrieve the previous result on the impact of a unitary random
shock. The implementation of shocks different from unity and different from each others
just requires the post-multiplication of the impact matrix associated to the random shock by
the matrix A.
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Special cases

The SAR model, with γ = 0 is a straightforward special case of the previous development.
The pure SAR model with β0 = β = γ = 0 is also a trivial special case.

It must be stressed that the spatial diffusion of a random shock is the only property of the
spatially autocorrelated error model (SEM), in which there are otherwise no spatial
spillovers.

For some examples see Ertur, Baumont and Legallo (2003) and LeGallo, Baumont,
Dallerba and Ertur (2005).
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