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1 Spatial Autoregressive models of order 1

1.1 SAR specification : the mixed regressive spatial autore-
gressive model

The SAR specification adds the spatially lagged endogenous variable to the
standard explanatory variables on the right hand side of the classical cross
section regression model. For reasons of generality that will be discussed
below, we allow the elements of WN , XN and εN to depend on the sample
size N , that is, to form triangular arrays following (?, p. 53-67).1 The model
is then:

yi,N = β0 + ρ
N∑
j=1

wij,Nyj,N +
K∑
k=1

xik,Nβk + εi,N for i = 1, ..., N (1)

or in more compact matrix form:

yN = β0ιN + ρWNyN +XNβ + εN (2)

where yN is the N × 1 vector of the dependent variable; ιN is the N × 1
unit vector; WNyN is the N × 1 vector called the spatially lagged endoge-
nous variable; WN is the N ×N interaction matrix with non negative, non
stochastic and finite weights such that wij,N ≥ 0 for i 6= j and wij,N = 0 for
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1Moreover we allow for the parameters to depend on the sample size as well, although
we will not index them by the sample size N to keep notations as simple as possible.
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i = j; ρ is the spatial autoregressive parameter measuring the magnitude of
the interaction or spatial autocorrelation between neighboring spatial units;
XN is the N × K matrix of the K non-stochastic explanatory variables;
β is the K × 1 vector of the associated parameters and finally the distur-
bance εi,N of the N × 1 error vector εN are independently and identically
distributed (0, σ2ε,N ).

If the interaction matrix is normalized, as is often the case in the litera-
ture, to have row sums of unity, with weights w∗ij,N = wij,N/

∑
j wij,N , then

the ith row of the vector W ∗NyN , can be interpreted as the spatially weighted
average of the neighboring values of i, i.e. [W ∗NyN ]i =

∑
j w
∗
ij,Nyj,N . Note

that, in matrix form, W ∗N = DNWN , where DN = diag(1/
∑

j wij,N ) is a
diagonal matrix containing the inverse of the row sums of WN .

1.2 SDM specification: the Spatial Durbin model

A straightforward generalization of the SAR model consists to add the spa-
tially lagged exogenous variables to the specification to obtain the so-called
Spatial Durbin Model or SDM:

yi,N = β0 + ρ
N∑
j=1

wij,Nyj,N +
K∑
k=1

βkxik,N +
K∑
k=1

γk

N∑
j=1

wij,Nzik,N + εi,N (3)

for i = 1, ..., N , or in more compact matrix form:

yN = β0ιN + ρWNyN +XNβ +WNZNγ + εN (4)

where yN is the N × 1 vector of the dependent variable, WNyN is the spa-
tially lagged dependent variable, ιN is the N × 1 unit vector and X =
[X1,N , . . . , Xk,N , . . . , XK,N ] is the N × K matrix of the explanatory vari-
ables, with the N ×1 vector Xk,N representing the kth explanatory variable;
β = (β1, . . . , βk, . . . , βK)′ is the K × 1 vector of the associated coefficients,
with βk,N the coefficient associated to the kth explanatory variable. Note
that ZN may include explanatory variables not included in XN , supposed
affecting yN only through their spatial lag: ZN may then be a N × (K+M)
matrix ZN = [XN Z̃N ] where XN is the previous N × K matrix of the
explanatory variables and Z̃N is the N ×M matrix of extra explanatory
variables not included in XN which are supposed to affect yN only through
their spatial lag. WNZN is the (N×(K+M)) matrix of the spatially lagged
explanatory variables and γ is the (K +M)× 1 vector of the associated co-
efficients. For ease of exposition, let us write the SDM as a SAR model as
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follows:
yN = ρWNyN + X̃Nb+ εN (5)

where X̃N = [ι XN WNZN ] and bN = [β0, β
′, γ′]′ with ZN being either XN

or ZN = [XN Z̃N ].
All the following results will be derived for the SAR model without any

loss of generality, having in mind that any SDM model may be written as
a SAR model with a generalized set of explanatory variables including their
spatial lag. However some specific issues with regard to the estimation of
the SDM model will be stressed when needed, also the spatial multipliers
will be presented in details using the SDM model for more clarity.

1.3 Basic results

For simplicity and without loss of generality, consider the SAR model as
defined in equation (??), with XN including now the constant term:

yN = ρWNyN +XNβ + εN (6)

1.3.1 Spatial filter

The spatial filter is defined as (IN − ρWN ). Note that if ρ was known, we
could filter out spatial autocorrelation from yN and then use the classical
regression model as follows:

(IN − ρWN )yN = XNβ + εN (7)

Of course ρ is usually unknown and has to be estimated as well as β and
σ2ε,N .

1.3.2 Reduced form

If (IN − ρWN ) is invertible, the reduced form of the SAR specification is
obtained as:

yN = (IN − ρWN )−1XNβ + (IN − ρWN )−1εN (8)

Therefore, we need to precisely define the invertibility condition for (IN −
ρW ) which is needed to write the reduced form: (IN − ρWN ) is invertible if
det(IN − ρWN ) 6= 0. Note first that if ρ = 0, (IN − ρWN ) is non singular.
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Now consider ρ 6= 0, we have:2

det(IN − ρWN ) = det[(−ρ)(WN −
1

ρ
IN )] (9)

= (−ρ)N det(WN −
1

ρ
IN )

Therefore det(IN − ρWN ) 6= 0 and (IN − ρWN ) is non singular if ρ−1 /∈
{ν1,N , ..., νN,N}, where ν1,N , ..., νN,N denote the eigenvalues of WN , i.e. if
ρ−1 is not an eigenvalue of WN . The parameter space for ρ will be specified
and discussed in more details below.

Let us also note that the reduced form equation of yN can also be rep-
resented as:

yN = XNβ + ρGNXNβ + (IN − ρWN )−1εN (10)

because IN + ρGN = (IN − ρWN )−1, where GN = WN (IN − ρWN )−1. This
alternative expression of the reduced form plays an important role with
respect to the identification conditions in Lee (2004) as we will see below.

The reduced form has two important implications. First, in (conditional)
mean, the value of the dependent variable in the cross-sectional unit i will be
affected not only by the values taken by the explanatory variable in the cross-
sectional unit i, but also by those in all other cross-sectional units through
the inverse spatial transformation (IN−ρWN )−1, which is a full matrix. This
is the so-called global spatial multiplier effect or global interaction effect.
Second, a random shock in a specific cross-sectional unit i does not only
affect the value of the dependent variable in the same unit, but also has
an impact on the values of dependent variable in all other cross-sectional
units through the same inverse spatial transformation. This is the so-called
“spatial diffusion” process of random shocks.3

1.3.3 Variance-covariance matrix

Assuming that XN is nonstochastic, the mathematical expectation of yN is
E(yN ) = (IN − ρWN )−1XNβ. The variance-covariance matrix of yN is in

2Recall that λ is an eigenvalue of A if and only if det(λIN − A) = 0. Note that
det(λIN − A) = (−1)n det(A − λIN ). The roots of det(A − λIN ) are the same as those
of det(λIN − A) (?, p. 38-39). The convention chosen here insures that the leading
coefficient of λn is always +1.

3This is actually not a properly defined global interaction or diffusion process as we do
not take into account the dynamics in the time dimension, which is of course necessary.
This kind of process can only be analysed in the framework of space-time panel data
models. In the cross-section models that we have here, interaction or diffusion is considered
as instantaneous.
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turn obtained as:

V(yN ) = σ2ε,N (IN − ρWN )−1(IN − ρWN )′−1 (11)

This variance-covariance matrix is in general a full matrix, its structure is
such that every location is correlated with every other location in the sys-
tem, but closer locations more so. It is also interesting to note that the
diagonal elements in equation (??), the variances at each location, are re-
lated to the neighborhood structure and are therefore not constant, inducing
heterogeneity even though the initial error process is homoscedastic.

Moreover, let XN = [WNyN XN ] be the regressor matrix and δ = [ρ β′]′

the vector of coefficients in equation (??). The OLS estimator δ̂OLS of δ is
δ̂OLS = (X′NXN )−1X′NyN . It follows that δ̂OLS = δ+(X′NXN )−1X′NεN . The
consistency of the OLS estimator may depend on the limiting behaviour of
(1/N)(WNyN )′εN , which is a component of (1/N)X′εN .4

Let us first consider the spatially lagged endogenous variable:

WNyN = GNXNβ +GNεN (12)

where GN = WN (IN − ρWN )−1. Let us note that WNyN is correlated with
the error term εN in finite samples, because, in general:

E[(WNyN )′εN ] = E[GNXNβ +GNεN )′εN ]

= E[β′X ′NG
′
NεN + ε′NG

′
NεN ]

= β′X ′NG
′
N E[εN ] + E[ε′NG

′
NεN ]

= E[ε′NG
′
NεN ] 6= 0 (13)

Indeed,

E[ε′NG
′
NεN ] = E[tr(ε′NG

′
NεN )]

= E[tr(G′NεNε
′
N )]

= trG′N E(εNε
′
N )

= σ2ε,N trG′N = σ2ε,N trGN 6= 0 (14)

generally trGN = trWN (IN − ρWN )−1 will not be equal to zero if ρ 6= 0,
implying that OLS estimators will be biased in finite samples. Because of
this non zero expectation and in the event that:

lim
N→∞

(1/N)(WNyN )′εN = lim
N→∞

(σ2ε,N/N) trGN 6= 0

the OLS estimator is inconsistent, unless (1/N) trGN can become smaller
and converge to zero as N tends to infinity (see ?, for more details).

4The other component is (1/N)X ′εN , which converges in probability to zero, and does
not create any problem for OLS consistency.
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1.4 Hypotheses

More specifically, the interaction matrix and the autoregressive parameter
are generally assumed to satisfy the following assumptions mainly based
on Kelejina and Prucha (1998, 1999, 2010, p. 55-56) and Lee (2002, 2004,
p.1899-1925). In order to distinguish the true parameters from other possible
values in the parameter space when needed, we denote ρ0, β0, and σ20 as the
true parameters which generate an observed sample as suggested by Lee
(2004), especially which it comes to maximum likelihood estimation.

Assumption 1 (a) The disturbances {εi,N : 1 ≤ i ≤ N,N ≥ 1} are identi-
cally distributed. Moreover, for each sample sizeN , they are jointly indepen-
dently distributed with E(εi,N ) = 0 and E(ε2i,N ) = σ2ε,N , where 0 < σ2ε,N < b

with b < ∞. (b) Finally, E(|εi,N |4+η) for some η > 0 exists, that is, a
moment higher than the fourth exists.

Assumption 2 The elements of XN are uniformly bounded constants, XN

has the full rank k, and limN→∞(1/N)X ′NXN exists and is non singular.

Assumption 3 (a) All diagonal elements ofWN are zero. (b) ρ ∈ (−aρN , ā
ρ
N )

with 0 < aρN , ā
ρ
N ≤ aρ <∞. (c) The matrix IN − ρW is non singular for all

ρ ∈ (−aρN , ā
ρ
N ).

Assumption 4 The row and column sums of the sequences of matrices WN

and (IN − ρWN )−1 at ρ = ρ0 are bounded uniformly (in absolute value).

Let AN be a square matrix, we say that the row and column sums of the
sequences of matrices AN is bounded uniformly in absolute value if there
exists a constant c <∞ that does not depend on N such that:

‖AN‖∞ = max
1≤i≤n

N∑
j=1

|aij,N | < c, ‖AN‖1 = max
1≤j≤n

N∑
i=1

|aij,N | < c, for all N

Note that this condition is identical to the condition that the sequences of
the maximum row sum matrix norms ‖AN‖∞ and the maximum column sum
matrix norms ‖AN‖1 are bounded (Horn and Johnson, 1985, p.294-295).

Assumption 5 (IN − ρWN )−1 are uniformly bounded in either row or col-
umn sums, uniformly in ρ in a compact parameter space Λ. The true ρ is
in the interior of Λ.
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Assumption 6 Sufficient condition for global identification:
The limn→∞

1
N [XN GNXNβ]′[XN GNXNβ] exists and is non singular,

where GN = WN (IN − ρWN )−1.

Under this set of assumptions, one can prove
√
N -rate of convergence

and asymptotic normality of the Maximum Likelihood and Quasi Maximum
Likelihood estimators. The latter is appropriate when the estimator is de-
rived from a Normal Likelihood but the disturbances in the model are not
truly normally distributed. Actually ? used a set of less restrictive assump-
tions to proof the results (see below).

Discussion
Assumption 1 allows the error term to depend on the sample sizeN , i.e.

to form triangular arrays. Note that even if the error term does not depend
on N , the elements of yN would still depend on N since the elements of
the inverse of IN − ρWN would generally depend on N . A triangular array
(tableau triangulaire) of random variables is a doubly indexed sequence in
which each row (column) is only as long as the row’s (column’s) index. For
example, the first element of the vector y will be different if N = 10 and
N = 15. This implies that these elements and the vector y should be indexed
by N :

yN = (y1N , y2N , . . . , yNN )

Our samples for y for N = 1, 2, 3, . . . are then (in rows):

N = 1 y11
N = 2 y12 y22
N = 3 y13 y23 y33
. . . . . .

where y11 6= y12 6= y13, y22 6= y23 etc.
The triangular nature of the variables, which leads to certain statistical

problems, especially with respect to the relevant Central Limit Theorem to
apply to get the asymptotic properties of the maximum likelihood estima-
tors, has, as far as we know, only been recognized by (?) or Lee (2002,
2004). Because statistics involving quadratic forms of εN will be present in
the estimation, the existence of the fourth order moment of εi,N will guar-
antee finite variances for the quadratic forms. The higher than the fourth
moment condition in Assumption 1 is needed in order to apply a Central
Limit Theorem due to ?.

Assumption 2 rules out multicollinearity among the regressors of XN .
The nonstochastic nature of XN and its uniform boundedness conditions in
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Assumption 2 are for simplicity. They can be relaxed without any problem:
if the elements of XN are stochastic and have unbounded ranges, conditions
in Assumption 2 can be replaced by some finite moment conditions.

Assumption 3, 4 and 5 deserve some particular attention as they are
properly specific to spatial regression models. Assumptions 3(a) is clearly
a normalization rule: it implies that no unit is viewed as its own neighbor.
Assumption 3(b) underlines that the autoregressive parameter ρ depends on
the sample size N as underlined by Kelejian and Prucha (2010, p.54-55). It
also defines the parameter space for ρ as an interval around zero such that
(IN−ρWN ) is non-singular for values of ρ in that interval. This Assumption
will be discussed in greater details in the next section. Assumption 3(c) en-
sures that yN is uniquely defined in reduced form in equation (??). In other
words, Assumption 4 guarantees that the system (??) has an equilibrium and
YN has mean (IN − ρW )−1XNβ and variance σ2ε(IN − ρW )−1(IN − ρW )′−1.

Assumptions 3 and 4 imply that the row and column sums of the variance-
covariance matrix of yN in equation (??) are uniformly bounded in absolute
value as N goes to infinity, thus limiting the degree of correlation between
the elements of yN . If AN and BN are two matrices conformable for multipli-
cation and whose row and column sums are uniformly bounded in absolute
value. Then the row and column sums of ANBN are also uniformly bounded
in absolute value ?. Indeed the extent of correlation is limited in virtually
all large sample analysis. Making an analogy to the time series literature,
these assumptions ensure that the process for the dependent variable exhibit
a fading memory.

Consider the following simple illustration: let {Xi}, i = 1, ..., N be a
random sample, where E(Xi) = µ, V(Xi) = σ2 for all i and cov(Xi, Xj) =
aσ2 with 0 < a < 1 for i 6= j. Consider now the sample mean: X̄N , then
clearly E(X̄N ) = µ, but V(X̄N ) = σ2

N2 [N2a+N(1−a)] and limN→∞V(X̄N ) =
aσ2 6= 0. Therefore, X̄N is not consistent in mean square. For X̄N to be
consistent in mean square, the extent of correlation must be limited so as
its variance goes to zero when the sample size goes to infinity, which implies
that the covariances go to zero for large |i− j|.

In practice, interactions matrices, specially spatial weight matrices, are
often specified to be row normalized. In many of these cases, no spatial
unit is assumed to be a neighbor to more than a given number q of other
spatial units. That is, for every j the number of wij 6= 0 is less than or equal
to q. In other words, each spatial unit has a limited number of neighbors
regardless of the sample size N . Clearly, in such cases, the spatial weight
matrix WN is sparse for large N and Assumption 3 is satisfied. Also, in other
cases, the spatial weight matrix does not contain zeros, but the weights are
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formulated such that they decline rapidly as a function of some measure of
distance between neighbors. Again, in such cases Assumption 3 will typically
be satisfied for WN .

The uniform boundedness condition of (IN−ρW )−1 at ρ0 in Assumption
4 implies that the sequence of matrices (IN −ρW )−1 are uniformly bounded
in both row and column sums uniformly in a neighborhood of ρ0.

Assumption 5 is needed to deal with the nonlinearity of ln |(IN −
ρW )−1| as a function of ρ in the log-likelihood function (Lee, 2004, Ap-
pendix A). It is stronger than Assumption 4.

If ||W || ≤ 1 for all N , where ||.|| is a matrix norm, then the sequence
of matrices ||(IN − ρW )−1|| are uniformly bounded in any subset of (−1, 1)
bounded away from the boundary. In particular if W is row-normalized
(IN − ρW )−1 is uniformly bounded in row sums norm uniformly in any
closed subset of (−1, 1). For this case, Λ in Assumption 5 can be taken
as a single closed set contained in (−1, 1) for all N . For the case where
W is not row-normalized but its eigenvalue are real, since the Jacobian
|(IN − ρW )−1| will be positive if −1/νmin < ρ < 1/νmax, where νmin and
νmax are the minimum and maximum eigenvalues of W , Λ can be a closed
interval contained in (−1/νmin, 1/νmax) for all N (see below section 1.5
parameter space for a complete discussion on this issue). Note finally that
Assumption 5 rules out consideration of models where the true ρ0 is close to
−1 or 1. Assumption 5 is not required by Kelejian & Prucha (1998, 1999)
in the context of Instrumental Variables or Generalized Method of Moments
estimation approaches where only Assumption 4 is used.

Assumption 6 requires that the generated regressors GNXNβ and XN

are not asymptotically multicollinear. It is a sufficient condition for global
identification of the vector of unknown parameters (β′, ρ, σ2)′ (see Lee, The-
orems 3.1 and 3.2, p.1905-1906, 2004). Indeed, note that the reduced form
equation of the SAR model can be represented as follows, replacing YN from
the reduced form equation (??) in equation (??):

YN = XNβ + ρGNXNβ + (IN − ρWN )−1εN (15)

using the fact that IN + ρGN = (IN − ρWN )−1. It should be noted that
the presence of XN and the linear independence of GNXNβ and XN are
the crucial conditions for the asymptotic results, especially the

√
N -rate of

convergence of the vector of unknown parameters.
However GNXNβ and XN can be linearly dependent if β = 0, which

corresponds to the pure SAR model. In this case β = 0, then GNXNβ = 0
and, hence, the set of GNXNβ and XN is linearly dependent. GNXNβ and
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XN can also be linearly dependent if WN is row-normalized and the rele-
vant regressor is only a constant term. To see this let XN = [ιN X1N ]
and conformably β = [β0, β′1], where β1 = 0. Consequently as XNβ =
ιNβ0, GNXNβ = (β0/(1 − ρ))ιN , because WN ιN = ιN implies that (IN −
ρWN )ιN = (1 − ρ)ιN and GNXNβιN = (1/(1 − ρ))ιN . The multicollinear-
ity of GNXNβ and XN is equivalent to the columns of GNXNβ lying in
the space spanned by the columns of XN , i.e., MNGNXNβ = 0 where
MN = IN−XN (X ′NXN )−1X ′N . It is also possible that even though GNXNβ
and XN are linear independent for finite N, they become asymptotically
multicollinear as N goes to infinity. This case corresponds to:5

lim
N→∞

(1/N)[GNXNβ]′MNGNXNβ = 0

To take into account those multicollinearity cases, Lee (2004, p.1907) re-
places Assumption 6 by the following assumption:

Assumption 6’ (Lee, 2004)
limN→∞(1/N)[GNXNβ]′MN [GNXNβ] = 0

and again proofs consistency and asymptotic normality of the ML and QML
estimators (Theorems 4.1 and 4.2, p.1908) under a more general set of as-
sumptions on the interaction matrix (see Lee, 2004, for more details on some
particular cases). Assumptions 2 and 3 in Lee (2004, p.1902) are as follows:

Assumption 7 (Lee, 2004)
The elements wij,N of WN are at most of order h−1N , denoted by O(1/hN ),

uniformely in all i, j, where the rate sequence can be bounded or divergent.
As a normalization, the elements of the main diagonal of WN , denoted
wii,N = 0 for all i.

Assumption 8 (Lee, 2004) The ratio hN/N → 0 as N goes to infinity.

Assumptions 7 and 8 are general in that they cover interaction matrices
where elements are not restricted to be nonnegative and those that might
not be row-normalized.

Standard interaction matrices where neighboring units are defined by
only a few adjacent ones (binary interaction matrices based, for example,
on first order contiguity, on k-nearest neighbors with k small compared

5From the partitioned matrix formula, the limN→∞
1
N

[XN GNXNβ]′[XN GNXNβ]
is nonsingular if and only if limN→∞(1/N)X ′NXN (see Assumption 2) and
limN→∞(1/N)[GNXNβ]′MN [GNXNβ] are nonsingular.
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to the sample size N , on band-distance with a relatively small threshold),
commonly used in the applied literature, satisfy assumptions 7 and 8.

Assumption 7 means that, for some real constant c, there exists a finite
integer Nc such that for all N > Nc, |hNwij,N | < c for all i, j.

• This assumption is always satisfied if {hN} is a bounded sequence.

• For models with a few neighboring units, {hN} would be bounded.

It is for example the case if WN is row-normalized such that its ith row
wi,N = (di1, di1, ..., di1)/

∑N
j=1 dij , where dij ≥ 0, represents a function of

the distance between the ith and jth units in some relevant space. For a
row-normalized interaction matrix, as dij are non-negative constants and
uniformly bounded, if the row-sums

∑n
j=1 dij , for i = 1, ..., N are uniformly

bounded away from zero at the rate hN , in the sense that
∑N

j=1 dij = O(hN )

uniformly in i and lim infN→∞ h
−1
N

∑N
j=1 dij > c, where c is a positive con-

stant independent of i and N , the implied row-normalized interaction matrix
will have the property ascribed by assumption 7.

Assumption 8 excludes the cases where
∑N

j=1 dij , for i = 1, ..., N , di-
verges to infinity at a rate equal to or faster than the rate of the sample size
N , because the ML estimator would likely be inconsistent for those cases.

• An important case that {hN}might diverge to infinity and still satisfies
Assumptions 7 and 8 is that of Case (1991).

In this model, neighbors refer to farmers who live in the same district. Sup-
pose that there are R districts and there are m farmers in each district (for
simplicity). The sample size is N = mR. It is assumed that in a district,
each neighbor of a farmer is given equal weights. In that caseWN = IN⊗Bm,
where Bm = (ιmι

′
m − Im)/(m − 1), ⊗ is the Kronecker product, and ιm is

a m-dimensional column vector of ones. For this exemple hn = m − 1 and
hN/N = m− 1/mR = O(1/R).

If the increase of the sample size N is partly generated by the increase of
the number of farmers m, then hN goes to infinity. If the number of district
R is finite, hN is divergent at the N rate; but if R goes also to infinity, hN is
divergent at a rate slower than the N rate. In other words if the sample size
N increases by increasing both R and m, then hN goes to infinity and hN/N
goes to zero as N goes to infinity. Therefore the ML estimator would still be
consistent in this case. However if the number of districts R is finite, then
hN is divergent at the N rate and the ML estimator is no more consistent.

Consider for simplicity the case where data is only collected in one dis-
trict, the interaction matrix is then WN = (ιN ι

′
N − IN )/(N − 1). In this
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case, hN = N − 1 is O(N), i.e. divergent at the N rate, and Lee (2004)
shows then that the ML estimator is no more consistent. Therefore if hN
diverges to infinity at a rate equal to or faster than the sample size N , the
ML estimators would be inconsistent.

Whether {hN} is a bounded or divergent sequence has interesting im-
plications on the OLS approach. The OLS estimators of β and ρ are in-
consistent when {hN} is bounded, but they can be consistent when {hN} is
divergent (see Lee, 2002, for details).

1.5 Parameter space (Kelejian and Prucha, 2010)

Assumption 3(b) defines the parameter space for the autoregressive param-
eter. In the existing literature the parameter space for the autoregressive
parameter is typically taken to be the interval (−1, 1), or a subset thereof,
and the autoregressive parameter is assumed not to depend on the sample
size. However, in applications it is typically found that for un-normalized
interaction matrices, IN − ρWN is singular for some values of ρ ∈ (−1, 1).

To avoid this situation, many applied researchers normalize each row of
their interaction matrices in such a way that IN − ρWN is non-singular for
all ρ ∈ (−1, 1). We now discuss the implications of various normalizations
of the interaction matrix.

Suppose cN denotes a scalar normalization factor. Clearly, this normal-
ization factor may depend on the sample size. For example, some of our
results below relate to the case in which cN corresponds to the maximal
row or column sum of the absolute values of the elements of WN . Given
such a normalizing factor, an equivalent specification of model (1) for yN is
obtained if ρWN is replaced by ρ∗W ∗N where ρ∗ = cNρ and W ∗N = WN/cN .
It is important to observe that even if ρ and its corresponding parameter
space do not depend on N , ρ∗ and its implied parameter space will depend
on the sample size as a result of the normalization of the interaction matrix.

It is for this reason that we allow in Assumption 3 for the elements of
the interaction matrices, and the autoregressive parameters and the cor-
responding parameter spaces to depend on N .6 Of course, Assumption 3
also covers the case where the true data generating process corresponds to
a model where autoregressive parameters do not depend on N .

6To keep the notation as simple as possible we will no more index all the variables by
the sample size N .
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1.5.1 General results

Having defined in Assumption 3, the parameter space for ρ as an interval
around zero such that (IN − ρW ) is non-singular for values of ρ in that
interval, the following Theorem gives the bounds for that interval (?, ?).

Theorem 1 (Kelejian and Prucha, 2010, p. 56)
Let τ denote the spectral radius of W , i.e.,

τ = max{|ν1|, ..., |νN |}

where |ν1|, ..., |νN | denote the modulus of the eigenvalues of W . Then (IN −
ρW ) is nonsingular for all values of ρ in the interval (−1/τ, 1/τ).

Proof. Consider that for ρ 6= 0, det(IN − ρW ) = det[(−ρ)(W − 1
ρIN )] =

(−ρ)N det(W − 1
ρIN ). Consequently (IN − ρW ) is non singular for values

of ρ−1 /∈ {ν1, ..., νN}, i.e. if ρ−1 is not an eigenvalue of W . In particular
(IN − ρW ) is nonsingular for |ρ−1| > τ . Rewriting the last inequality as
|ρ| < τ−1 completes the proof.

Remark 1 Note that if |ρ| < τ−1, (IN − ρW )−1 can be expanded into an
infinite series as:

(IN − ρW )−1 = IN + ρW + ρ2W 2 + ...+ ρrW r + ... =
∞∑
r=0

ρrW r (16)

Theorem 2 (Kelejian and Prucha, 2010, p.56)
Let

r = max
1≤i≤N

N∑
j=1

|wij |, c = max
1≤j≤N

N∑
i=1

|wij |

and let
τ∗ = min (r, c)

Then τ ≤ τ∗ and consequently IN − ρW is non-singular for all values of ρ
in the interval (−1/τ∗, 1/τ∗).

Proof. Note first that r is the maximum row sum matrix norm and c is the
maximum column sum matrix norm of W . As an immediate consequence of
Gershgorin’s Theorem (Horn and Johnson, 1985, p.344-346).: the spectral
radius is the greatest lower bound for the values of all matrix norms of W .
We then have τ = max{|ν1|, ..., |νN |} ≤ τ∗. The result now follows from
Theorem 1.

13
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Note however that the specification of the parameter space is here some-
what more restrictive than the previous one, i.e. (−1/τ∗, 1/τ∗) ⊂ (−1/τ, 1/τ).

It is possible to consider the specification of the parameter space for ρ in
some special cases such as when W is a row normalized interaction matrix
or when W is a symmetric, not row normalized interaction matrix.

1.5.2 Row normalized W matrix

Theorem 3
If W is a row normalized interaction matrix, then (IN − ρW )−1 exists for
all |ρ| < 1.

Proof. (1) Consider the case where W is normalized to have row sums
of unity. All the eigenvalues of the row normalized W matrix are then less
than 1: indeed, in this case r = 1, then |νi| ≤ 1 for all i. Using Theorem 2,
(IN − ρW ) is nonsingular for all values of ρ in the interval (−1, 1).

Proof. (2) Alternatively, let us prove this result using Gershgorin’s
Theorem.

Theorem 4 (Gershgorin’s Theorem)
Let A be a (N ×N) square matrix with elements aij . Let

Ri =

N∑
j=1,j 6=i

|aij |, Cj =

N∑
i=1,i 6=j

|aij |

Then each eigenvalue of A lies in at least one of the N circles defined by:

|ν − aii| ≤ Ri, i = 1, ..., N

and hence in the union of these circles. Since the spectrum of A equals
the spectrum of A′, the deleted absolute row sums can be replaced by the
deleted absolute column sums, so that also each eigenvalue of A lies in at
least one of the N circles defined by:7

|ν − ajj | ≤ Cj , j = 1, ..., N

and hence in their union.

7The set of distinct eigenvalues, denoted by σ(A), is called the spectrum of A.
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Consider now W which has wij ≥ 0 and wii = 0 and let

r = max
i

N∑
j=1

wij = max
i
Ri, c = max

j

N∑
i=1

wij = max
j
Cj ,

Then the eigenvalues of W satisfy for i = 1, ..., N

|νi| ≤ r, |νi| ≤ c, i = 1, . . . , N

If W is row normalized, r = 1 and so |νi| ≤ 1.
Next, let Q be a nonsingular matrix that triangularize W as follows:

QWQ−1 = Gν , Gν =

 ν1 . . . ∗
...

. . .
...

0 . . . νN


This is always possible, e.g. Gν may represent the Jordan normal form
(Horn and Johnson, 1995, p.119-128). Then

det(IN − ρW ) = det(Q−1Q(IN − ρW )) = det(Q(IN − ρW )Q−1)

= det(QQ−1 − ρQWQ−1) = det(Q−1Q− ρGν)

= det(IN − ρGν)

= (1− ρν1)(1− ρν2) . . . (1− ρνN ) = ΠN
i=1(1− ρνi)

and det(IN − ρW ) 6= 0 for any |ρ| < 1, since |ρνi| ≤ |ρ| < 1.

Remark 2 Moreover it is clear that det(IN − ρW ) > 0 for any |ρ| < 1,
meaning that IN − ρW is definite positive with all eigenvalues strictly posi-
tive.

Remark 3 If W is not row normalized IN − ρW will generally be singular
for certain values of |ρ| < 1. Then using Theorems 1 or 2 it is always
possible to normalize the interaction matrix in such a way that the inverse
of IN − ρW will exist in an easily established region.

Consider for exemple the following model where W is not row normal-
ized:

y = ρWy +Xβ + ε = ρ∗W ∗y +Xβ + ε (17)

where ρ∗ = τ∗ρ, W ∗ = W
τ∗ and τ∗ = min(r, c) defined in Theorem 2. Note

that |IN − ρ∗W ∗| 6= 0 for:

|ρ∗| < 1

min ( r
τ∗ ,

c
τ∗ )

=
1

1
τ∗ min (r, c)

= 1 (18)
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So if the model is normalized using τ∗ and ρ∗ is taken to be the parameter,
(IN − ρ∗W ∗)−1 exists for all |ρ∗| < 1. One would then estimate ρ∗ as a
parameter, and since ρ∗ = τ∗ρ, one would estimate ρ as ρ̂ = ρ̂∗/τ∗.

We could also use τ , the spectral radius of W , defined in Theorem 1,
for an alternative normalization. Note however that τ∗ is much easier to
compute than τ , especially for large sample sizes.

1.5.3 Symmetric W matrix

Theorem 5
Consider the case where W is symmetric, all the eigenvalues of W are then
real. Assume that W is not row normalized. Let νmax and νmin be the
largest and the smallest eigenvalues of W. Assume as will typically be case
if all the eigenvalues of W are real, that νmax > 0 and νmin < 0. Then
(IN − ρW ) is nonsingular for all values of ρ in the interval (ν−1min, ν

−1
max).

Proof. If ρ = 0, (IN − ρW ) is nonsingular. If ρ 6= 0 we have:

|IN − ρW | = (1− ρν1)(1− ρν2) . . . (1− ρνN ) = ΠN
i=1(1− ρνi)

so (IN − ρW ) is nonsingular unless ρ is equal to the inverse of an eigen-
value ν−11 , ν−12 . . . ν−1N , i.e ρ−1 is equal to an eigenvalue. Thus (IN − ρW )
is nonsingular if ρ−1 < νmin or ρ > ν−1min and ρ−1 > νmax or ρ < ν−1max and
therefore if ρ ∈ (ν−1min, ν

−1
max)

Remark 4 Consider now the normalization by τ of a symmetric not row-
normalized matrix W . As all the eigenvalues of this matrix are real so
that νmax > 0 and νmin < 0. We know that (IN − ρW ) is nonsingu-
lar for all values of ρ in the interval (1/νmin, 1/νmax). Consider ρ∗ = τρ
and W ∗ = W/τ , eigenvalues of the normalized matrix W ∗ are given by
ν∗ = ν/τ and (IN − ρ∗W ∗) is nonsingular for all values of ρ∗ in the interval
(τ/νmin, τ/νmax). Suppose that |νmax| > |νmin|, then the previous interval
becomes (νmax/νmin, 1). Suppose now that |νmax| < |νmin|, then τ = |νmin|
and the previous interval becomes (−1, |νmin|/νmax). Note that those two in-
tervals are less restrictive than the interval (−1, 1): (−1, 1) ⊂ (νmax/νmin, 1)
and (−1, 1) ⊂ (−1, |νmin|/νmax).

Remark 5 (Similarity) Consider the case where the row normalized ma-
trix is computed from a symmetric matrix, the row normalized matrix is no
more symmetric and may have complex eigenvalues. However in this case, it
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will have the same real eigenvalues and determinant as a similar symmetric
matrix.8

Theorem 6
For symmetric matrices similar to row normalized matrices where νmax = 1,

(IN − ρW ) is nonsingular for all values of ρ in the interval (ν−1min, 1).

Proof. Consider R = IN − ρDW , where DW is row normalized and non-
symmetric. However, in this case DW has the same real eigenvalues as
the symmetric but not row normalized matrix D1/2WD1/2. Consider the
similarity transformation:

D−1/2RD1/2 = D−1/2(IN − ρDW )D1/2 = IN − ρD−1/2DWD1/2

= IN − ρD1/2WD1/2

Then IN −ρDW and IN −ρD1/2WD1/2 have then the same real eigenvalues
and determinant. As DW is row normalized νmax = 1 and IN−ρD1/2WD1/2

is nonsingular for all values of ρ in the interval (ν−1min, 1).

Remark 6 (Strictly diagonally dominant matrix) Consider againR =
IN − ρDW where DW is row normalized and non-symmetric and |ρ| < 1,
then R is strictly diagonally dominant. This means that the diagonal ele-
ment of R (which equals 1) strictly exceeds the sum of the other elements
in the row (which equals ρ since W is row normalized). Strictly diagonally
dominant matrices are invertible, therefore R is invertible.

Remark 7 (LeSage and Pace, 2009, p.88-89) Consider the case where
W has complex eigenvalues: W is row normalized and is not similar to a
symmetric matrix. If a real matrix has complex eigenvalues, these come in
complex conjugate pairs. Consider the determinant of IN − ρW :

det(IN − ρW ) = ΠN
i=1(1− ρνi) = [ΠN

i=3(1− ρνi)](1− ρν1)(1− ρν2)

where, without loss of generality, one of the complex conjugate pairs of
eigenvalues appears in ν1 and the other in ν2. If the product (1−ρν1)(1−ρν2)
equals 0, this would lead to a zero determinant which would imply that
(IN − ρW ) is singular. The question is then what values of ρ could lead to
a singular (IN − ρW )? Let ν1 = r + ic and ν2 = r − ic where r is the real

8Recall that a Matrix B is said to be similar to a matrix A if there exist a nonsingular
matrix S such that B = S−1AS. Note also that if A and B are similar, then they have
the same eigenvalues, counting multiplicity (Horn and Johnson, p.44-45).
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part of ν1 and ν2, c is the imaginary part of ν1 and ν2 and i is the square
root of −1, so that i2 = −1. Assume that c 6= 0. Consider now:

(1− ρν1)(1− ρν2) = 0

(1− ρr − ρic)(1− ρr + ρic) = 0

1− 2ρr + ρ2r2 − ρ2i2c2 = 0

1− 2ρr + ρ2(r2 + c2) = 0

(19)

The discriminant of this quadratic equation in ρ is d = −4c2 < 0. Therefore
the quadratic equation will have two complex roots. This means that a
real ρ cannot result as a root of this quadratic equation. In other words,
complex conjugate eigenvalues do not affect whether (IN − ρW ) is singular.
Only pure real eigenvalues can affect the singularity of (IN − ρW ).

Consequently, for W with complex eigenvalues, the interval for ρ which
guarantees the non singularity of (IN − ρW ) is (ν−1min, 1) where νmin is here
the most negative purely real eigenvalue of W .

1.5.4 Definite positiveness of (I − ρW )

We know that:
det(IN − ρW ) = ΠN

i=1(1− ρνi)

It is straightforward to see that det(IN − ρW ) > 0 if |ρ| < 1/τ , where
τ = max{|ν1|, ..., |νN |} as defined in Theorem 1, as well as if |ρ| < 1/τ∗ where
τ∗ = min (r, c) with r = max1≤i≤N

∑N
j=1 |wij | and c = max1≤j≤N

∑N
i=1 |wij |

as defined in Theorem 2. It will also be the case if W is a row normalized
matrix with |ρ| < 1 as in Theorem 3.

1.6 Estimation of the SAR model

Let us consider again the first order Spatial Autoregressive Model:

y = ρWy +Xβ + ε (20)

The variance-covariance matrix for y is easily seen to be equal to:

V(y) = σ2(IN − ρW )−1(IN − ρW ′)−1 (21)

Note that, in general, this matrix will be full and it’s main diagonal will not
be constant, inducing complete heteroscedasticity.
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It also follows from the reduced form (??) that the spatially lagged vari-
able Wy is, in general, correlated with the error term since:

E[(Wy)′ε] = σ2 trW (IN − ρW )−1 6= 0 (22)

Therefore the OLS estimator will be biased in finite samples and inconsistent
under Assumptions 1-5. However, as highlighted by Lee (2002), in some
cases, it may still be consistent and even be asymptotically efficient relative
to some other estimators.

1.6.1 Ordinary Least Squares estimation

Let us first consider the special cases where the OLS estimator is consis-
tent (Lee, 2002). Those cases are often neglected in the literature but are
nevertheless important, especially when it comes to economic applications.

As highlighted by Ertur and Koch (2011), traditionally, connectivity has
been understood as geographical proximity, and various weights matrices
based on geographical space have thus been used in the spatial econometric
literature, such as contiguity, nearest neighbors and geographical distance-
based matrices. However the definition is in fact much broader and can
be generalized to any network structure to reflect any kind of interactions
between observations. This is why we prefer to use the terms interaction
matrix for W . We also propose to generalize spatial econometric methods
to give birth to a new field of econometrics that we call “Econometrics of
interactions”.

As also underlined by Durlauf et al. (2005, p.643-645), what really mat-
ters when adapting these methods to, for instance, growth econometrics is
the identification of the appropriate notion of space and of the appropriate
similarity or interaction measure. By analogy to Akerlof (1997), countries
may be considered as located in some general socio-economic and institu-
tional or political space, defined by a range of factors. Implementation of
spatial methods thus requires accurate identification of their localisation in
such a general space.9

In this framework, it could be the case that the interaction structure is
much denser between units than when considering for instance binary inter-
action matrices based on geographical space (first order contiguity, nearest
neighbors, band-distance). In such a framework, Lee (2002) shows that the

9Ideally, such a matrix should be theory-based, but this is beyond the scope of the
present section. Note that, the field of ’Econometrics of interactions’ has been proposed
in a forthcoming paper by Behrens, Ertur and Koch (2012), who furthermore derive the
interaction matrix from their structural theoretical model.
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OLS estimator can be consistent regardless of whether or not the distur-
bances are spatially correlated an even that it is asymptotically relatively
efficient compared to other estimators.

Lee (2004) focuses on OLS estimation of SAR models where the inter-
action matrix is row-normalized and has the property that the row sum
diverges to infinity for each unit i = 1, ..., N .

More specifically, consider the row-normalized interaction matrix based
on some function dij of the distance between units i and j in some relevant
space: wij = dij/

∑
j dij and replace Assumptions 6 and 7 by the following

one:

Assumption 9 The elements dij , in WN are nonnegative constants and are
uniformly bounded. The sums,

∑
j dij , are uniformly bounded away from

zero at the rate hN , where limN→∞ hN =∞.

This assumption requires that each unit in the limit has infinitely many
neighbors. For economic applications where either the neighbors of any
unit are dense in a relevant compact characteristic space or each unit is
influenced by many of its neighboring units (which represents a significant
portion of the total population of units), it is likely that

∑
j dij will diverge

and (1/N)
∑

j dij will converge as N becomes large.
For example, in Case et al. (1993), interactions are defined in an ethnic

space. In the most relevant interaction matrix used in this study, dij =
1/|ri − rj |, where ri is the proportion of state i’s population that is of
African descent. As no state in the United States has a zero proportion
of African-Americans in its population and that no couple of states share
the same proportion of African-Americans in their population, dij would be
positive. As there is a distribution of the population of African-Americans
across regions of US states, (1/N)

∑
j dij will be bounded away from zero

and
∑

j dij will be likely to possess the N rate of divergence in this example.
Therefore it is likely that the OLS estimator is consistent is this setting.

The consistency of the OLS estimator depends crucially on limN→∞ hN =
∞. Moreover, Lee (2002) shows that as long as hN tends to infinity at a
rate faster than

√
N , i.e. if limN→∞(hN/

√
N) = ∞, the OLS estimator

will converge in probability to its true value at the usual
√
N rate and its

limiting distribution will be normal. Under this assumption, Lee (2004) also
shows that the OLS estimator has the same limiting distribution as that
of the Maximum Likelihood estimator and can therefore be asymptotically
efficient.
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1.6.2 Instrumental variables or two-stage least squares estima-
tion

As the spatially lagged variable Wy is, in general, correlated with the error
term ε, a classical instrumental variables method (IV) or, equivalently, two-
stage least squares method (2SLS), have been proposed by Anselin (1988)
and Kelejian and Prucha (1998) among others.

Let H denote the N ×p matrix of instruments used to estimate the SAR
model and let Z = [Wy X] denote the matrix of regressors in equation (??),
where we exclude spatially lagged explanatory variables:

y = Zδ + ε (23)

where δ = [ρ β′]′. Consider the following Assumptions in addition to As-
sumptions 1-4:

Assumption 10 The instrument matrices H have full column rank p ≥
k+1 (for all N large enough). They are composed of a subset of the linearly
independent columns of (X,WX,W 2X, ...).

Assumption 11 Let H be a matrix of instruments:

(a) limN→∞ n
−1H ′H = QHH where QHH is finite and nonsingular.

(b) limN→∞ n
−1H ′Z = QHZ where QHZ is finite and has full column

rank.

In the 2SLS approach, the predicted value of Z in a regression on the
instruments H is obtained using OLS in the first stage, as Z = Hθ+ η with
θ̂ = (H ′H)−1H ′Z:

Ẑ = Zθ̂ = H(H ′H)−1H ′Z = PHZ (24)

with H an N × p matrix of instruments, including the exogenous variables
X, with p ≥ k + 1. Note that it is straightforward to see that PH =
H(H ′H)−1H ′ is the orthogonal projection matrix associated with H and is
symmetric and idempotent, hence singular. This projection does not affect
X but yields:

Ŵy = H(H ′H)−1H ′Wy (25)

We replace, in the second stage, Z by Ẑ in equation (??) to get the 2SLS
estimator:

δ̂2SLS = (Ẑ ′Ẑ)−1Ẑ ′y (26)
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or equivalently, in full expression, the IV estimator:

δ̂IV = [Z ′H(H ′H)−1H ′Z]−1Z ′H(H ′H)−1H ′y (27)

Inference on δ is then based on the asymptotic variance-covariance matrix:

AsyV ar(δ̂IV ) = σ̂2ε [Z
′H(H ′H)−1H ′Z]−1 (28)

Discussion
In practice, ? suggest using [X WX W 2X] as instruments for Z, but

they were aware that the ideal instruments would be E(Z) = [X W E(y)],
where E(y) = (I − ρW )−1Xβ using the reduced form, as also stressed in
the discussions in ? and ?. In principle, the problem is to approximate
E(Z) as closely as possible. Assumption 10 assumes that H contains, at
least, the linearly independent columns of X and WX, which ensures that
Ẑ = (X, Ŵy) with Ŵy = PHWy.

Following ?, suppose furthermore that W is row-normalized, all its eigen-
values are therefore less than or equal to one in absolute value. Then ob-
serving that |ρ| < 1, it is readily seen that:

E(y) = (IN − ρW )−1Xβ

=

[ ∞∑
r=0

ρrW r

]
Xβ, W 0 = IN (29)

Consequently, in this case, W E(y) is seen to be formed as a linear combi-
nation of the columns of the matrices X,WX,W 2X, .... It is for this reason
that they postulate in Assumption 10 that H is composed of a subset of
the linearly independent columns of those matrices. In practice that sub-
set might be the linearly independent columns of [X WX W 2X], or if the
number of regressors is large, just those of [X WX].10

Assumption 11 will ensure that the estimators remain well defined asymp-
totically. More specifically, under this set of assumptions, it is possible to
show that the estimators of ρ and β are consistent and asymptotically nor-
mally distributed (?).

Two points should nevertheless be noted.
First, Assumption 11b rules out models in which all of the parameters

associated to the exogenous regressors, including the intercept parameter, if
an intercept is present, are zero, i.e. β = 0. This case is of limited interest
in practice since the mean of y would then be zero.

10Note that this is still valid if |ρ| < τ−1, where τ is the spectral radius of W , see
equation (??) and does not require row-normalization.
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Second, if W is row-normalized, Assumption 11b will not be satisfied if
the only non-zero element of β corresponds to the constant term. In this case
Assumption 11b requires that the generation of y involves at least one non-
constant regressor. This implies that if W is row-normalized, the hypothesis
that all the slopes are zero cannot be tested using 2SLS estimators.

Let ιN be the N × 1 vectors of unit elements. Also suppose that the
first column of X is ιN and that the remaining columns of X are denoted
by the N × (k − 1) matrix X1 so that X = [ι X1]. Partition β accordingly
as β = (β0 β

′
1)
′. Then the SAR model can be expressed as:

y = β0ι+X1β1 + ρWy + ε (30)

If W is row-normalized, we know that WιN = ιN . Now if β1 = 0, then it
follows from (??) that:

E(Wy) = W

[ ∞∑
r=0

ρrW r

]
ιNβ0 =

β0
1− ρ

ιN (31)

Thus the mean of Wy is not linearly independent of ιN and the matrix QHZ
does not have full column rank and thus Assumption 11b is violated. This
means that at least one nonconstant regressor in X must have a significant
coefficient in order that valid instruments can be generated. As the 2SLS
estimators are based on the existence of relevant nonconstant regressors, it
is impossible to test the joint significance of X with those estimators.

If W is not row-normalized, then is general WιN will be linearly inde-
pendent of ιN and Assumption 11b would not require the existence of a
relevant nonconstant regressor in the generation of y.

Lee (2003) suggests a best 2SLS (B2SLS) estimator, which requires using
W (IN − ρW )−1X and X as the matrix of instruments. But the proposed
method has exactly the same limitation as the previous one and requires at
least a relevant nonconstant regressor in X.

In addition, Lee (2007) notes that even if valid instruments do exist,
the 2SLS estimator may be inefficient relative to the Maximum Likelihood
(ML) estimator. Comparing the limiting variance matrices of ML and 2SLS
estimators, he observes that neither the 2SLS nor the B2SLS estimators
have the same limiting distribution as the ML estimator. He then suggests
a best Generalized Method of Moments (GMM) estimator, incorporating
some other moment conditions in addition to those based on X in order to
improve upon the efficiency of the 2SLS estimator. Moreover the proposed
method does not have the previous limitation, i.e. it is applicable even if all
regressors are irrelevant.
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1.6.3 Maximum Likelihood estimation

The simultaneity embedded in the Wy term must be explicitly accounted
for in the maximum likelihood estimation framework, as first outlined by ?.
More recently, ? presents a comprehensive investigation of the asymptotic
properties of the maximum likelihood estimators of SAR models.

Under the hypothesis of normality of the error term, ε ∼ N(0, σ2ε IN ),
the log-likelihood function for the SAR model is given by:

lnL(β′, ρ, σ2ε ) = −N
2

ln(2π)− N

2
ln(σ2ε ) + ln |I − ρW |

− 1

2σ2ε
[(I − ρW )y −Xβ]′ [(I − ρW )y −Xβ] (32)

An important aspect of this log-likelihood function is the Jacobian of the
transformation, which is the determinant of the (N ×N) full matrix (IN −
ρW ) for our model.

Recall that moving from the likelihood for the Normal error vector to the
likelihood for the observed dependent variable, the Jacobian of the transfor-
mation needs to be inserted. In the SAR model, this corresponds to:∣∣∣∣∂ε∂y

∣∣∣∣ =

∣∣∣∣∂(y − ρWy −Xβ)

∂y

∣∣∣∣ = |IN − ρW | (33)

Note that this Jacobian reduces to a scalar 1 in the standard regression
model, since |∂(y−Xβ)/∂y| = |IN | = 1. Maximizing the log-likelihood func-
tion (??) is therefore not equivalent to minimizing weighted least squares,
i.e. the last term in the log-likelihood function, as in the standard linear
regression model since it ignores the Jacobian term. This illustrates infor-
mally how weighted least squares will not yield a consistent estimator in the
SAR model, due to the endogeneity in the Wy term. The log-Jacobian also
implies constraints on the parameter space for ρ, which must be such that
|IN − ρW | > 0.

Let us write the usual first order conditions for the maximization of the
log-likelihood function (??):

∂ lnL

∂β′
= X ′(IN − ρW )y −X ′Xβ = 0 (34)

∂ lnL

∂ρ
= − tr[W (IN − ρW )−1] +

1

σ2ε
[(IN − ρW )y −Xβ]′Wy = 0

∂ lnL

∂σ2ε
= −N

σ2ε
+

1

σ4ε
[(IN − ρW )y −Xβ]′[(IN − ρW )y −Xβ] = 0

24



Cem Ertur November 12, 2014

Note that here we have used the following result to compute the partial
derivative of the determinant of I − ρW with respect to ρ:

∂ln|IN − ρW |
∂ρ

= tr(IN − ρW )−1
∂(IN − ρW )

∂ρ
(35)

= tr(IN − ρW )−1(−W )

= − tr[W (IN − ρW )−1]

The presence of the Jacobian term could complicate the computation of the
maximum likelihood estimators which involves the repeated evaluation of
this determinant. However ? suggests that it can be expressed as a function
of the eigenvalues ωi of the spatial weights matrix W :

|IN − ρW | =
N∏
i=1

(1− ρωi) =⇒ ln |IN − ρW | =
N∑
i=1

ln(1− ρωi) (36)

This expression simplifies considerably the computations since the eigenval-
ues of W have to be computed only once at the outset of the numerical
optimization procedure.

From the usual first-order conditions, the maximum likelihood estimators
of β and σ2, given ρ, are obtained as:

β̂ML(ρ) = (X ′X)−1X ′(I − ρW )y (37)

σ̂2ML(ρ) =
1

N

[
(I − ρW )y −Xβ̂ML(ρ)

]′ [
(I − ρW )y −Xβ̂ML(ρ)

]
(38)

Note that, for convenience:

β̂ML(ρ) = β̂O − ρβ̂L (39)

where β̂O = (X ′X)−1X ′y and β̂L = (X ′X)−1X ′Wy. Define êO = y −Xβ̂O
and êL = Wy −Xβ̂L, it can be then easily seen that:

σ̂2ML(ρ) =

[
(êO − ρêL)′(êO − ρêL)

N

]
(40)

Substitution of (??) and (??) in the log-likelihood function (??) yields a
concentrated log-likelihood as a non-linear function of a single parameter ρ:

lnL(ρ) = −N
2

[ln(2π) + 1] +

N∑
i=1

ln(1− ρωi)

−N
2

ln

[
(êO − ρêL)′(êO − ρêL)

N

]
(41)
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where êO and êL are the estimated residuals in a regression of y on X and
Wy on X, respectively. A maximum likelihood estimate for ρ is obtained
from a numerical optimization of the concentrated log-likelihood function
(??).11

The estimation procedure can then be described as follows. We begin by
first regressing by OLS y on X which yields β̂O and Wy on X which yields
β̂L. We then compute the estimated residuals êO and êL. Given those,
we maximize, using a numerical optimization routine, the concentrated log-
likelihood function to find ρ. Given ρ̂ML we can then compute β̂ML =
β̂O − ρ̂β̂L and σ̂2ML = [(1/N)(êO − ρ̂êL)′(êO − ρ̂êL)].

Under the regularity conditions described for instance in Lee (2004,
p.1902-1904), it can be shown that the maximum likelihood estimators
have the usual asymptotic properties, including consistency, normality, and
asymptotic efficiency.

The asymptotic variance-covariance matrix follows as the inverse of the
information matrix. Defining Gρ = W (IN −ρW )−1 to simplify notation, we
have then:

AsyV ar[β′, ρ, σ2] =
(42) 1

σ2X
′X 1

σ2 (X ′GρXβ)′ 0
1
σ2X

′GρXβ tr
[
(Gρ +G′ρ)Gρ

]
+ 1

σ2 (GρXβ)′(GρXβ) 1
σ2 trGρ

0 1
σ2 trGρ

N
2σ4

−1

The estimated asymptotic variance-covariance matrix will then be used
for asymptotic inference on the parameters under the regularity conditions.

1.6.4 Quasi Maximum Likelihood estimation

The Quasi Maximum Likelihood (QML) estimator is derived from a nor-
mal likelihood but the disturbances in the model are not truly normally
distributed. The QML estimators are identical to ML estimators, but their
asymptotic variance-covariance matrix will take into account non-normality
of the disturbance term. Let θ = (β′, ρ, σε)

′ and let θ0 be the true value of
θ. The variance-covariance matrix of 1/

√
(N)∂L(θ0)/∂θ is:

E

(
1√
N

∂L(θ0)

∂θ
.

1√
N

∂L(θ0)

∂θ′

)
= −E

(
1

N

∂2L(θ0)

∂θ∂θ′

)
+ Ωθ (43)

11The reader unfamiliar with spatial econometrics methods can refer to LeSage and
Pace (2009). LeSage also provides Matlab routines for estimating such models in his
Econometrics Toolbox (http://www.spatial-econometrics.com).
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where

Σθ,N = −E

(
1

N

∂2L(θ0)

∂θ∂θ′

)

=

 1
σ2X

′X 1
σ2 (X ′GρXβ)′ 0

1
σ2X

′GρXβ tr
[
(Gρ +G′ρ)Gρ

]
+ 1

σ2 (GρXβ)′(GρXβ) 1
σ2 trGρ

0 1
σ2 trGρ

N
2σ4


(44)

and

Ωθ,N =

 0 ∗ ∗
µ3
σ4

∑N
i=1Giixi

2µ3
σ4

∑N
i=1GiiGiXβ + (µ4−3σ4)

σ4

∑N
i=1G

2
ii ∗

µ3
2σ6 ι

′
NX

1
2σ6 [µ3ι

′
NGXβ + (µ4 − 3σ4) trG] (µ4−3σ4)

4σ8


(45)

is a symmetric matrix with µj = E(εji ), j = 2, 3, 4, being respectively, the
second, third and fourth moments of ε, where Gi is the ith row of G, Gij
is the (i, j)th entry of G = W (IN − ρW )−1, and xi is the ith row of X.
Assumption 6 is sufficient to guarantee that the average Hessian matrix is
nonsingular for large enough N . If ε is normally distributed, Ωθ = 0. Lee
proofs then the following theorem (theorem 3.2, 2004, p.1906):

Theorem 7
Under previous Assumptions

√
N(θ̂− θ0)

d→ N(0,Σ−1θ + Σ−1θ ΩθΣ
−1
θ ), where

Ωθ = limN→∞Ωθ,N

and
Σθ = − limN→∞ E

(
1
N
∂2L(θ0)
∂θ∂θ′

)
which are assumed to exist.

If the disturbance term is normally distributed, then
√
N(θ̂ − θ0)

d→
N(0,Σ−1θ ).

The estimation of the asymptotic variance of θ̂ is trivial. The Σθ can be
estimated by (??) evaluated at θ̂. The Ωθ can be estimated by (??), µ3 and
µ4 in Ωθ can be estimated by the third and fourth order empirical moments
based on estimated residuals ε̂ (Lee, 2004).

1.7 SEM specification: the spatial error model

Let us consider the following cross section regression model with spatially
autocorrelated errors:

y = Xβ + ε ε = λWε+ u (46)
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where y is the N×1 vector of the dependent variable, X is the N×K matrix
of the K non-stochastic explanatory variables; β is the K × 1 vector of the
associated parameters. In this specification, the N ×1 error vector ε follows
a first order SAR process: λ is the spatial autoregressive parameter and W
is the N × N interaction matrix. Finally the disturbance terms ui in the
N × 1 error vector u are independently and identically distributed (0, σ2u).

1.7.1 Reduced form

If IN −λW is invertible,12 noting that ε = (IN −λW )−1u, the reduced form
of the SEM specification is obtained as:

y = Xβ + (IN − λW )−1u (47)

This reduced form implies that a random shock in a specific cross-sectional
unit i does not only affect the value of the dependent variable in the same
unit, but also has an impact on the values of dependent variable in all
other cross-sectional units through the inverse spatial transformation (IN −
λW )−1. This is the so-called spatial “diffusion” process of random shocks.
The SEM specification shares this property with the SAR model, but does
not share the global spatial multiplier effect that we highlighted for the SAR
process.

Note that this model may also be interpreted as a constrained Spatial
Durbin Model:

(IN − λW )y = (IN − λW )(β0ιN +Xβ) + u (48)

y = (IN − λW )β0ιN + λWy +Xβ − λWXβ + u (49)

Using a row-normalized interaction matrix W , one gets:

y =
β0

1− λ
ιN + λWy +Xβ − λWXβ + u (50)

which is a Spatial Durbin Model:

y =
β0

1− λ
ιN + λWy +Xβ +WXγ + ε (51)

with non linear constraints γ = −λβ.

12The invertibility conditions are the same as for the SAR model.
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1.7.2 Spatial filter

If λ was known, we could filter out spatial autocorrelation from both of y
and X and then use the classical regression model as follows:

(IN − λW )y = (IN − λW )Xβ + u (52)

Of course λ is usually unknown and has to be estimated as well as β and
σ2u,N .

1.7.3 Variance-covariance matrix

Assuming that X is non stochastic, the mathematical expectation of y is
trivially E(y) = Xβ. Its variance-covariance matrix is in turn obtained as:

V(y) = V(ε) = σ2u(IN − λW )−1(IN − λW )′−1 = σ2uΩε(λ) (53)

This is exactly the result we obtained for the SAR model. Note again
that in general, this matrix will be full and it’s main diagonal will not be
constant. Thus spatial autocorrelation in the error term induces complete
heteroscedasticity. This a case of non spherical error term, where OLS
estimators are consistent but inefficient.

1.8 Estimation of the SEM model

1.8.1 GLS and FGLS estimation

The GLS estimator is given by:

β̂GLS = [X ′Ω−1ε (λ)X]−1X ′Ω−1ε (λ)y (54)

Clearly, this estimator would be BLUE if λ were known, we would have:

E(β̂GLS) = β and V(β̂GLS) = σ2u[X ′Ω−1ε (λ)X]−1 (55)

Of course as λ is unknown, the GLS estimator is not feasible. Nevertheless
let’s have a closer look at this estimator:

β̂GLS = [X ′(IN − λW )′(IN − λW )X]−1X ′(IN − λW )′(IN − λW )y

β̂GLS = [(X − λWX)′(X − λWX)]−1(X − λWX)′(y − λWy)

β̂GLS = (X ′LXL)−1X ′LyL
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where XL = (IN − λW )X = X − λWX and yL = (IN − λW )y = y − λWy
may be interpreted as spatial counterparts to the Cochrane-Orcutt trans-
formation in Times Series. The GLS estimator is thus the OLS estimator
on spatially filtered variables, if λ were known.

Using the feasible GLS estimator requires to have a consistent estimator
for λ that could be used to transform the model by the spatial Cochrane-
Orcutt procedure and then estimate β by OLS:

β̂FGLS = [X ′Ω−1ε (λ̂)X]−1X ′Ω−1ε (λ̂)y (56)

β̂FGLS = (X̃ ′LX̃L)−1X̃ ′LỹL (57)

where X̃L = X − λ̂WX and ỹL = y − λ̂Wy.
The OLS estimator for β is consistent in the spatially autocorrelated

error model, the errors can then be estimated consistently. However the
OLS estimator for λ in the SAR model for the errors is not consistent as
we previously showed, but ? propose a consistent Generalized Method of
Moments (GMM) estimator for λ.

1.8.2 Maximum likelihood estimation

Consider again the spatial error model (SEM) under Assumptions 1-4 and
under the additional hypothesis of normality of the error term u ∼ N(0, σ2uIN ):

y = Xβ + ε ε = λWε+ u (58)

We then have:

ε ∼ N(0, σ2uΩε(λ)) and y ∼ N(Xβ, σ2uΩε(λ)) (59)

Observing that |σ2uΩε(λ)| = |σ2u|N |I−λW |−2, the log-likelihood function for
the SEM model is then obtained as:

lnL(β′, λ, σ2ε ) = −N
2

ln(2π)− 1

2
ln |σ2uΩε(λ)| − 1

2σ2u
(y −Xβ)′Ωε(λ)−1(y −Xβ)

lnL(β′, λ, σ2ε ) = −N
2

ln(2π)− N

2
ln(σ2u) + ln |I − λW | (60)

− 1

2σ2u
(y −Xβ)′Ωε(λ)−1(y −Xβ)
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Noting that Ωε(λ)−1 = (I − λW )′(I − λW ), the log-likelihood may then be
written as follows:

lnL(β′, λ, σ2ε ) = −N
2

ln(2π)− N

2
ln(σ2u) + ln |I − λW |

− 1

2σ2u
[(I − λW )(y −Xβ)]′ [(I − λW )(y −Xβ)]

lnL(β′, λ, σ2ε ) = −N
2

ln(2π)− N

2
ln(σ2u) + ln |I − λW |

− 1

2σ2u
[(I − λW )y − (I − λW )Xβ]′ [(I − λW )y − (I − λW )Xβ]

lnL(β′, λ, σ2ε ) = −N
2

ln(2π)− N

2
ln(σ2u) + ln |I − λW | (61)

− 1

2σ2u
[yL −XLβ]′ [yL −XLβ]

where XL = (IN − λW )X and yL = (IN − λW )y. Suppose now that λ is
known, the first order conditions for β and σ2u are:

∂ lnL

∂β′
= − 1

2σ2u
(X ′LyL + 2βX ′LXL) = 0 (62)

∂ lnL

∂σ2u
= −N

σ2u
+

1

σ4u
(yL −XLβ)′(yL −XLβ) = 0 (63)

It follows that the maximum likelihood estimators for β and σ2u, given λ,
are obtained as:

β̂ML(λ) = (X ′LXL)−1X ′LyL (64)

σ̂2ML(λ) =
1

N
(yL −XLβ)′(yL −XLβ) (65)

Substitution of (??) and (??) in the log-likelihood function (??) yields a
concentrated log-likelihood function as a non-linear function of a single pa-
rameter λ:

lnL = −N
2

[1 + ln(2π)]− N

2
ln

(
û′û

N

)
+

N∑
i=1

ln(1− λωi) (66)

where û = yL−XLβ̂ML(λ), then û′û = y′LYL−y′LXL(X ′LXL)−1X ′LyL, where
yL = y − λWy and XL = X − λWX are the spatially filtered variables. A
maximum likelihood estimate for λ is obtained from a numerical optimiza-
tion of the concentrated log-likelihood function (??).
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The estimation procedure is hence more complicated than for the SAR
model since û in the concentrated log-likelihood function is indirectly also
a function of λ as β̂ is obtained for a value for λ. Therefore a one-time
optimization of the concentrated log-likelihood function with respect to λ
does not suffice to obtain ML estimates of all the unknown parameters. An
iterative approach is thus required. This would essentially alternate back
and forth between the estimation of λ conditional upon a vector of residuals
u generated for a value of β, and an estimation of β and σ2 conditional upon
a value for λ until numerical convergence is obtained. This procedure can be
described as follows. We first regress y on X by OLS and compute the initial
set of residuals û = y − XβOLS . Given û, we then find λ that maximizes
the concentrated log-lokelihood function. Given λ, we carry out FGLS that
yields β̂FGLS . We then compute a new set of residuals û = y − Xβ̂FGLS .
If the numerical convergence criterion is met, that is, if values for both the
residuals and β̂FGLS fail to change from one iteration to the next, given
û and λ̂ML we compute σ̂2ML, else we go back to the maximization of the
concentrated log-likelihood function to get a new λ.

As for the SAR model, under the regularity conditions described for
instance in Lee (2004, p.1902-1904), it can be shown that the maximum
likelihood estimators have the usual asymptotic properties, including con-
sistency, normality, and asymptotic efficiency.

The asymptotic variance-covariance matrix follows as the inverse of the
information matrix. Defining Gλ = W (I − λW )−1 to simplify notation, we
have then:

AsyVar[β′, λ, σ2] =
(67) 1

σ2X
′
LXL 0 0
0 G2

λ + trG′λGλ
1
σ2 trGλ

0 1
σ2 trGλ

N
2σ4

−1

Due to the block-diagonal form of the asymptotic variance matrix, knowl-
edge of the precision of λ does not affect the precision of the β estimates.
Consequently, if the latter is the primary interest, the complex inverse and
trace expressions in (??) need not be computed.
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2 Spatial or interaction multipliers

2.1 The spatial Durbin Model

Let us consider the general case of the Spatial Durbin Model SDM:

yi = β0 + ρ

N∑
j=1

wijyj +

K∑
k=1

xikβk +

K∑
k=1

wijzikγk + εi for i = 1, ..., N (68)

or in matrix form:

y = β0ιN + ρWy +Xβ +WZγ + ε (69)

where y is the N × 1 vector of the dependent variable, Wy is the spatially
lagged dependent variable, ιN is the N × 1 unit vector and X is the N ×K
matrix of the explanatory variables; β is the K × 1 vector of the associated
coefficients. Note that Z may include explanatory variables not included in
X, supposed affecting y only through their spatial lag: Z may then be a
N × (K +M) matrix Z = [X Z̃] where X is the previous N ×K matrix of
the explanatory variables and Z̃ is the N ×M matrix of extra explanatory
variables not included in X which are supposed to affect y only through
their spatial lag. WZ is the (N × (K +M)) matrix of the spatially lagged
explanatory variables and γ is the (K + M) × 1 vector of the associated
coefficients.

Suppose for simplicity that Z only includes X, the model may then be
written as follows:

y = β0ιN + ρWy +Xβ +WXγ + ε (70)

or

y = β0ιN + ρWy +
K∑
k=1

(INβk +Wγk)Xk + ε (71)

and the reduced form is then:

y = (I−ρW )−1ιNβ0 +
K∑
k=1

(I−ρW )−1(INβk+Wγk)Xk+(I−ρW )−1ε (72)

Note that if W is row normalized then W qιN = ιN for q ≥ 0 and we have:

(IN − ρW )−1ιN = (IN + ρW + ρ2W 2 + . . .)ιN

= (1 + ρ+ ρ2 + . . .)ιN =
1

1− ρ
ιN (73)
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y =
β0

1− ρ
ιN +

K∑
k=1

(IN − ρW )−1(INβk +Wγk)Xk + (IN − ρW )−1ε (74)

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K:

∂y

∂X ′k
= Sk(W ) = (IN − ρW )−1(INβk +Wγk)

= (IN + ρW + ρ2W 2 + . . .)(INβk +Wγk)

where (IN − ρW )−1 is the so-called global spatial multiplier or global inter-
action multiplier.

Recall that (IN − ρW )−1 = IN + ρGρ, where Gρ = W (IN − ρW )−1.
Therefore those partial derivatives could also be represented by:

∂y

∂X ′k
= Sk(W ) = (IN + ρGρ)(INβk +Wγk) (75)

which yields an alternative decomposition of partial derivatives of y relative
to Xk for k = 1, . . . ,K. Let us define, as the impact matrix associated to the
kth explanatory variable, the N ×N matrix Sk(W ) = (IN − ρW )−1(INβk +
Wγk). Sk(W ) is a N ×N full matrix whose elements are:

Sk(W ) =


Sk(W )11 Sk(W )12 . . . Sk(W )1N
Sk(W )21 Sk(W )22 Sk(W )2N

...
...

. . .
...

Sk(W )N1 Sk(W )N2 . . . Sk(W )NN

 (76)

The partial derivatives of yi relative to xik or xjk for i, j = 1, . . . , N , j 6= i
and for k = 1, . . . ,K are then:

∂yi
∂xik

= Sk(W )ii,
∂yi
∂xjk

= Sk(W )ij (77)

In general Sk(W )ii 6= 0 and Sk(W )ij 6= 0 for i, j = 1, . . . , N , j 6= i and for
k = 1, . . . ,K. The diagonal elements of this matrix, diag(Sk(W )), represent
the direct impacts including “own spillover” effects, which are inherently
heterogenous in presence of spatial autocorrelation due to differentiated in-
teraction terms in the W matrix. This type of heterogeneity is called in-
teractive heterogeneity, in opposition to standard individual heterogeneity
in panel data models (Debarsy and Ertur, 2010). The off-diagonal elements
of the impact matrix represent indirect impacts: they are collected in the
matrix Qk(W ) = Sk(W )− diag(Sk(W )).
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Note that the own derivative for country i includes the feedback effects
where country i affects country j and country j also affects country i as
well as longer paths which might go from country i to j to k and back to
i. The magnitude of those direct effects will depend on: (1) the degree of
interaction between countries, which is governed by the W matrix, (2) the
parameter ρ, measuring the strength of spatial correlation between countries
and (3) the parameters βk and γk.

Moreover, considering column j, we note that a variation ∆xjk of the kth

explanatory variable in spatial unit j differently affects each of the spatial
units of the sample: 

Sk(W )1j
Sk(W )2j

...
Sk(W )jj

...
Sk(W )Nj


The sum down the jth column yields the total impact on yi (i = 1, ..., N)
for all the N spatial units of the sample of a change of xjk in spatial unit j.
The total impacts, direct and indirect, from each of the units j = 1, ..., N
are then collected in the row vector ι′NSk(W ). However it may be of interest
to distinguish direct and indirect effects in applied papers where the direct
impacts are actually higher than each of the indirect impacts and potentially
higher than their sum (if the impat matrix is strictly diagonally dominant).
The total indirect impacts from each of the units j = 1, ..., N may then be
usefully collected in the row vector ι′NQk(W ).

Considering row i, we note that an identical variation ∆Xk of the kth

explanatory variable across all the units of the sample differently affects
spatial unit i:(

Sk(W )i1 Sk(W )i2 . . . Sk(W )ii . . . Sk(W )iN
)

The sum across the ith row represents the total impact on yi of an identical
change of xjk (j = 1, ..., N) across all the N spatial units in the sample. The
total impacts, direct and indirect, on each of the units i = 1, ..., N are then
collected in the column vector Sk(W )ιN . Again note that the total indirect
impacts on each of the units i = 1, ..., N may be collected in the row vector
Qk(W )ιN .

Of course, in both cases the corresponding elements of main diagonal of
Sk(W ) may be taken into account or not in those sums, depending on the
inclusion or the exclusion of the direct effects in those computations.
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Given the complexity and the amount of the information available in
such impact matrices, LeSage and Pace (2009) suggest some useful summary
scalar measures. The average direct impact, including feedback effects, is
defined as:

N−1 tr(Sk(W ))

whereas the average global impact is defined as:

N−1ι′NSk(W )ιN

where ιN is the N ×1 sum vector. Finally the average indirect impact is, by
definition, the difference between the average global impact and the average
direct impact:

N−1ι′NSk(W )ιN −N−1 tr(Sk(W )) = N−1ι′NQk(W )ιN

2.2 Special cases

• The spatial autoregressive model (SAR)
Let us now consider the specification corresponding to the SAR model,
excluding the spatial lags of the explanatory variables from the speci-
fication (ρ 6= 0, β 6= 0 and γ = 0), the partial derivatives of y relative
to Xk for k = 1, . . . ,K are then simply:

∂y

∂X ′k
= Sk(W ) = (IN − ρW )−1INβk = (IN + ρW + ρ2W 2 + . . .)INβk

(78)
The diagonal elements of this impact matrix represent the direct ef-
fects including “own spillover” effects whereas the off-diagonal terms
represent indirect effects. Note that the magnitude of pure feedback
effects are then given by Sk(W )ii − βk, where βk could be interpreted
as representing the direct impact of the explanatory variable if there
was no spatial autocorrelation, i.e. if ρ was equal to zero. Note also
that in this special case, using a row-normalized interaction matrix
W , since then (IN − ρW )−1ιN = 1

1−ρ ιN , the total impacts on each of
the units i = 1, ..., N collected in the column vector Sk(W )ιN may be
written as follows:

Sk(W )ιN = (IN − ρW )−1βkιN =
βk

1− ρ
ιN

The average global impact of a variation of the kth explanatory variable
simplifies then to:

N−1ι′NSk(W )ιN = N−1
βk

1− ρ
ι′N ιN =

βk
1− ρ

(79)
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• The cross regressive model or SLX model
Consider now the following simpler model, which does not include the
spatially lagged endogenous variable (ρ = 0) but includes exogenous
variables together with spatially lagged exogenous variables (β 6= 0
and γ 6= 0) which may be estimated by OLS under the usual set of
assumptions:

y = β0ιN +
K∑
k=1

(INβk +Wγk)Xk + ε (80)

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K:

∂y

∂X ′k
= Sk(W ) = INβk +Wγk (81)

Again, the diagonal elements of this impact matrix represent the di-
rect effects (as in the standard OLS model), whereas the off-diagonal
terms represent indirect effects. If βk can be interpreted as the direct
effect as in the standard a-spatial setting, one must be cautious when
interpreting γk as the spillover effect. The individual impacts actually
depend on the interaction structure of the ”spatial weight matrix” W .

For a simple row-standardized first order contiguity matrix, a very
special case indeed, the individual impact of a variation of Xk in spatial
unit j on y in spatial unit i is

wij∑
j wij

γk. Since W is a binary row-

standardised matrix, the impact is constant in each row and the sum
of each of the rows of Wγk is identical and equal to γk. This means
that if one increases Xk by the same amount ∆Xk in each of the
“neighbors” of unit i, then the total impact on y in unit i is γk∆Xk

and is identical for all units. But as a row-standardised matrix is no
more symetric, the sum as each of the columns will not be identical
for all units. The sum of a column can be interpreted in turn as the
total impact of an increase of Xk in unit j on y for all of the units
of the sample. These sums will in general be different for each of the
columns, but they are still representing spillover effects, different from
the identical spillover effect represented by the sums of the rows.

Furthermore all of those results bear on the row-standardization of the
W matrix which is just a standardization method among others and
perhaps not the best one (see Kelejian and Prucha, 2010). Contrary
to the Spatial Durbin Model, here the impacts are only local, coming
from neighboring units, W playing the role of a local spatial multiplier
or local interaction multiplier.
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• The spatially autocorrelated error model (SEM)
Let us finally consider the following regression model with spatially
autocorrelated errors:

y = β0ιN +Xβ + ε ε = λWε+ u (82)

which may be written as follows:

y = β0ιN +Xβ + (IN − λW )−1u (83)

Let us take the partial derivatives of y relative to Xk for k = 1, . . . ,K:

∂y

∂X ′k
= Sk(W ) = INβk (84)

which is exactly the same result as in the standard a-spatial regression
model, where there are no spatial spillovers. Note that this model may
also be interpreted as a constrained Spatial Durbin Model:

(IN − ρW )y = (IN − λW )(β0ιN +Xβ) + u (85)

y = (IN − ρW )β0ιN + λWy +Xβ − λWXβ + u (86)

As before, using a row-normalized interaction matrix W , one gets:

y =
β0

1− λ
ιN + λWy +Xβ − λWXβ + u (87)

which is the Spatial Durbin Model:

y =
β0

1− λ
ιN + λWy +Xβ +WXγ + ε (88)

with non linear constraints : γ = −λβ.

2.3 Impact of a random shock

2.3.1 The spatial Durbin model

Reconsider the SDM model, in matrix form:

y = β0ιN + ρWy +Xβ +WXγ + ε (89)

the reduced form is then:

y = (I − ρW )−1ιNβ0 + (I − ρW )−1(Xβ +WXγ) + (I − ρW )−1ε (90)
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This specification also implies that a shock affecting one unit propagates to
all the other units of the sample through the spatial transformation (I −
ρW )−1. Note that the derivative of y with respect to ε is:

∂y

∂ε′
= (I − ρW )−1 = (IN + ρW + ρ2W 2 + . . .) (91)

which is the so-called global spatial multiplier or the interaction multiplier.
Let us define, as the impact matrix associated to the random shock, the
(N × N) matrix U(W ) = (IN − ρW )−1. U(W ) is a (N × N) full matrix
whose elements are:

U(W ) =


U(W )11 U(W )12 . . . U(W )1N
U(W )21 U(W )22 U(W )2N

...
...

. . .
...

U(W )N1 U(W )N2 . . . U(W )NN

 (92)

The partial derivatives of yi relative to εi or εj for i, j = 1, . . . , N , j 6= i are
then:

∂yi
∂εi

= U(W )ii,
∂yi
εj

= U(W )ij (93)

In general U(W )ii 6= 0 and U(W )ij 6= 0 for i, j = 1, . . . , N , j 6= i.
The diagonal elements of this matrix, diag(U(W )), represent the direct

impacts of a unitary random shock including “own spillover” effects. Again
those impacts are heterogenous due to differentiated interaction terms in
the W matrix. The off-diagonal elements of the impact matrix represent
indirect impacts of the unitary random shock.

Note also that the own derivative for unit i includes as previously the
feedback effects where the unitary random shock on unit i affects unit j and
unit j also affects unit i as well as longer paths which might go from unit i to
j to k and back to i. The magnitude of those direct effects will now depend
on: (1) the degree of interaction between countries, which is governed by
the W matrix and (2) the parameter ρ, measuring the strength of spatial
correlation between units. The magnitude of pure feedback effects are given
by U(W )ii − 1.

Considering column j, we note that an unitary random shock in spatial
unit j differently affects each of the spatial units of the sample. It represents
the emission side of the spatial diffusion process. Considering row i, we note
that unitary random shocks across all the units of the sample differently
affects spatial unit i. It represents the reception side of the spatial diffusion
process.
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2.3.2 Simulating the impacts of heterogenous random shocks

Let ai be the magnitude of the shock affecting unit i and ε̂i be the (N × 1)
vector containing the estimated error of the model with a shock on the error
term in unit i:

ε̂i = (ε̂1, ..., ε̂i + ai, ..., ε̂N )′ (94)

Therefore, the (N × 1) vector yi∗ of the simulated dependent variable with
a shock in unit i is:

y∗i = (I − ρ̂W )−1(ιN β̂0 +Xβ̂ +WXγ̂) + (I − ρ̂W )−1ε̂i (95)

y∗i = (I − ρ̂W )−1X̃δ̂ + (I − ρ̂W )−1ε̂i (96)

where X̃ = [ιN X WX], δ̂ = [β̂0 β̂ γ̂]′ and β̂0, β̂, γ̂ and ρ̂ are the Maximum
Likelihood estimates of the unknown parameters in equation (??).

Furthermore, let Y ∗ be the (N × N) matrix where each column i rep-
resents the simulated dependent variable for all units in the sample with a
shock in unit i:

Y ∗ = [y∗1 ... y∗n] = (I − ρ̂W )−1[X̃δ̂ ... X̃δ̂] + (I − ρ̂W )−1ε̂∗ (97)

where ε̂∗ = [ε̂1 ... ε̂N ] is a (N × N) matrix. Given the definition of ε̂i, the
matrix ε̂∗ can be rewritten as follows:

ε̂∗ =


ε̂1 + a1 ε̂1 . . . ε̂1
ε̂2 ε̂2 + a2 . . . ε̂2
...

...
. . .

...
ε̂N ε̂N . . . ε̂N + aN


ε̂∗ = ι′N ⊗ ε̂+A (98)

where ιN is the unit vector of dimension N and A is a diagonal matrix of
order N , whose ith diagonal element corresponds to ai. Therefore, we may
write:

Y ∗ = (I − ρ̂W )−1(ι′N ⊗ X̃δ̂) + (I − ρ̂W )−1(ι′N ⊗ ε̂+A) (99)

which may be also written:

Y ∗ = ι′N ⊗ (I − ρ̂W )−1X̃δ̂ + ι′N ⊗ (I − ρ̂W )−1(ε̂+A) (100)

Finally, we compute the impact of a shock on unit i on all values of the depen-
dent variable by calculating the difference between the simulated dependent
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variable Y ∗ and the matrix of observed dependent variable Y = ι′N ⊗ y with

y = (I − ρ̂W )−1(X̃δ̂ + ε̂):

Y ∗ − Y = (I − ρ̂W )−1A (101)

Note that when A = I we retrieve the previous result on the impact of a
unitary random shock. The implementation of shocks different from unity
and different from each others just requires the post-multiplication of the
impact matrix associated to the random shock by the matrix A.

2.3.3 Special cases

The SAR model, with γ = 0 is a straightforward special case of the previous
development. The pure SAR model with β0 = β = γ = 0 is also a trivial
special case.

It must be stressed that the spatial diffusion of a random shock is the
only property of the spatially autocorrelated error model (SEM), in which
there are otherwise no spatial spillovers (see ?, ?, for some examples).
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