

Licence EG - Semestre 3 - 2023-2024 TECHNIQUES QUANTITATIVES Développements limités (exercices)

Exercice 1 : Déterminer les DL₃ en 0 des fonctions :

1)
$$f(x) = e^{2-5x}$$

2)
$$g(x) = \ln(3 + 10x)$$

3)
$$h(x) = (4x+1)^{3/4}$$
.

Exercice 2:

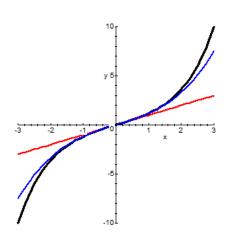
- 1) Déterminer les DL3 en 0 des fonctions $f(x) = \frac{1}{4+x}$ et $g(x) = \frac{1}{4-x}$.
- 2) Soit la fonction h définie pour $x \in]-4$; 4[par $h(x) = \frac{1}{16-x^2}$.
 - a) Déterminer les réels A et B tels que h(x) = Af(x) + Bg(x).
 - b) Déterminer en utilisant les questions précédentes le DL3 en 0 de la fonction h.

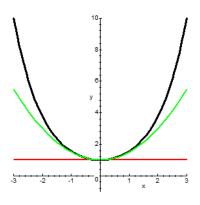
Exercice 3: Fonctions hyperboliques.

On définit les fonctions « cosinus hyperbolique » et « sinus hyperbolique » sur $\mathbb R$ respectivement par :

$$ch(x) = \ \frac{e^x + e^{-x}}{2} \ et \ sh(x) = \ \frac{e^x - e^{-x}}{2} \, .$$

1) Déterminer le DL₃ en 0 de ces deux fonctions.





- 2) En déduire le DL₃ en 0 de la fonction définie sur \mathbb{R} par $h(x) = ch(x) \times sh(x)$.
- 3) Que vaut h''(0)?
- 4) Proposer un tracé local de le fonction h au voisinage du point d'abscisse 0.

Exercice 4

Soit h une fonction 3 fois dérivable en 0 dont le DL_3 en 0 est : $h(x) = -1 + \frac{3}{2}x - 2x^3 + o(x^3)$ (reste).

Proposer un tracé local de C_h , courbe représentative de h , pour x voisin de 0.

Exercice 5:

Dans chacun des cas suivants, déterminer le DL₃ en 0 de f. En déduire l'équation de (T), tangente à C_f en (0; f(0)) et faire une représentation graphique locale de (T) et C_f.

$$a) f(x) = \frac{1}{1-x}$$

b)
$$g(x) = \frac{1}{1 - x^2}$$
 c) $h(x) = \frac{1}{1 - x^3}$

c)
$$h(x) = \frac{1}{1 - x^3}$$

Exercice 6:

Déterminer le DL3 en 0 des fonctions suivantes, soit en utilisant la formule de Taylor, soit en utilisant les développements limités des fonctions usuelles.

1)
$$f(x) = 2 - x + 4x^2 + 5x^3 - 8x^4$$

2)
$$g(x) = \frac{1}{3x + 2}$$

1)
$$f(x) = 2 - x + 4x^2 + 5x^3 - 8x^4$$
 2) $g(x) = \frac{1}{3x + 2}$ 3) $h(x) = \frac{2 - x + 4x^2 + 5x^3 - 8x^4}{3x + 2}$

4)
$$t(x) = e^{-4x+3}$$

5)
$$v(x) = ln(2 - 5x)$$

Exercice 7 : Déterminer les limites suivantes à l'aide de développements limités :

1)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$
 2) $\lim_{x \to 0} \frac{e^x - 1}{x}$ 3) $\lim_{x \to 0} \frac{\cosh(x) - 1}{x^2}$

2)
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$

3)
$$\lim_{x\to 0} \frac{ch(x)-1}{x^2}$$

Exercice 8:

1) Vérifier que le DL₃ en 0 de la fonction $f(x) = \sqrt{1-x}$ est égal à $1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + o(x^3)$.

2) Déterminer le DL₃ en 0 de la fonction $g(x) = \frac{1}{2+x}$.

3) En déduire le DL₃ en 0 de la fonction $t(x) = \frac{\sqrt{1-x}}{2+x}$.

4) Déterminer alors une valeur approchée de $\frac{\sqrt{0.96}}{2.04}$.