1

Nom-Prénom:

EXERCICE 1:

1) Determiner une primitive sur $I=\left]0;+\infty\right[$ de la fonction définie par $f\left(|x|\right)=-2+12x^{8}-\frac{8}{x^{5}}+9$ $x^{1/4}$ \sqrt{x} .

2) Déterminer une primitive sur $I = \mathbb{R}$ de la fonction définie par $f(x) = \frac{16x}{3(4x^2+1)^{1/2}}$

3) Déterminer une primitive sur I = IR de la fonction définie par f (x) = $\frac{2x^3}{3+5x^4}$.

4) Déterminer une primitive sur I = IR de la fonction définie par $f(x) = (3x + 2)e^{3x^2+4x-3}$.

5) Déterminer une primitive sur $I = \left[\frac{9}{2}; +\infty \right]$ de la fonction définie par $f(x) = \frac{5x}{2x-9}$.

EXERCICE 2 1) Soit la fonction définie sur I =] 1/3; + ∞ [par $g(x) = \frac{x+3}{6x^2+x-1}$. a) Déterminer les constantes réelles A et B telles que $\frac{x+3}{6x^2+x-1} = \frac{A}{2x+1} + \frac{B}{3x-1}$.

On admettra pour continuer que A = -1 et B = 2.

b) Déterminer une primitive de g sur I, puis la primitive de g sur I qui vaut 1 en 2.

c) Déterminer une primitive de g sur l'intervalle J =]-1/2; 1/3 [.

EXERCICE 3: Soit la fonction définie sur \mathbb{R}^2 par $f(x;y) = 2xy + 3x^2 - 28x + 80$.

1) En utilisant la méthode du Lagrangien, minimiser la fonction f sous la condition f sous la condition f valeur du minimum?

2) Retrouver le résultat en étudiant une fonction à une variable.

EXERCICE 4: Soit la fonction définie pour x > 0 et y > 0 par $f(x;y) = 100 x^{0,4} y^{0,6}$. Maximiser f sous la condition 2x + 3y = 5. Quelle est la valeur du maximum?

EXERCICE 5:

1) Déterminer une primitive sur I =]1; $+\infty$ [des fonctions définies par $f(x) = \frac{1}{(5x-4)^2}$ et $g(x) = \frac{1}{5x-4}$.

2) En déduire une primitive sur I =]1; $+\infty$ [de la fonction définie par $h(x) = \frac{5x}{(5x-4)^2}$, puis de la fonction définie par $w(x) = \frac{x+9}{(5x-4)^2}$.