1. Density estimation

1.1. Histogram

1.1.1. Real world data

1.1.1.1. Galaxies

library('sm')
Package 'sm', version 2.2-6.0: type help(sm) for summary information
library(MASS)

Attachement du package : 'MASS'
L'objet suivant est masqué depuis 'package:sm':

    muscle
data(galaxies)
?galaxies
hist(galaxies)

hist(galaxies,freq=F)

hist(galaxies,freq=F,nclass=20)

hist(galaxies,breaks=quantile(galaxies,seq(0,1,len=20)))

1.1.1.2. Faithful

data(faithful)
attach(faithful)
?faithful
hist(waiting,freq=F)

hist(waiting,freq=F,nclass=20)

hist(waiting,breaks=quantile(waiting,seq(0,1,len=20)))

hist(eruptions,freq=F)

hist(eruptions,freq=F,nclass=20)

hist(eruptions,breaks=quantile(eruptions,seq(0,1,len=30)))

1.1.2. Simulation of a mixing model

rmixing=function(n,alpha,l0,l1,p0,p1)
# Generate data from a mixing model 
{
  z=rbinom(n,1,alpha)
  f1=eval(parse(text=paste('r',l1,'(',paste(c(n,p1),collapse=','),')',sep='')))
  f0=eval(parse(text=paste('r',l0,'(',paste(c(n,p0),collapse=','),')',sep='')))
  x=z*f1+(1-z)*f0
  return(x=x)
}

dmixing=function(t,alpha,l0,l1,p0,p1)
# draw the density of the mixing model
{
  res=alpha*eval(parse(text=paste('d',l1,'(t,',paste(p1,collapse=','),')',sep='')))+(1-alpha)*eval(parse(text=paste('d',l0,'(t,',paste(p0,collapse=','),')',sep='')))
}

#Example  
n=300
alpha=0.3
l0='norm'
p0=c(8,1)
l1='norm'
p1=c(0,2)
s=seq(-10,10,0.001)

x=rmixing(n,alpha,l0,l1,p0,p1)

#### histogram
par(mfrow=c(1,3))
hist(x,freq=F,ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,freq=F,ylim=c(0,0.4),nclass=20)
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,breaks=quantile(x,seq(0,1,len=20)),ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

1.2. Moving window estimator

1.2.1. On the simulated mixing model

par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='rectangular'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

1.2.2. Come back to real world data

# Galaxies 
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='rectangular')$y))
lines(density(galaxies,kernel='rectangular'),col='blue')

# Faithful 
hist(waiting,freq=F,ylim=range(density(waiting,kernel='rectangular')$y))
lines(density(waiting,kernel='rectangular'),col='blue')

hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='rectangular')$y))
lines(density(eruptions,kernel='rectangular'),col='blue')

1.3. Kernel estimator

1.3.1. On the simulated mixing model

Effect of h value
par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='g'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

Effect of K value
par(mfrow=c(2,3))
plot(density(x,bw=1,kernel='r'),main='Uniform',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='g'),main='Gaussian',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='e'),main='Epanechnikov',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='triangular'),main='Triangular',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='b'),main='Biweight',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='cosine',bw=1),main='Cosine',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

######## Quadratic loss
# number of simulations
J=100
hs=(1:20)/20
s=seq(-10,10,0.01)

h0=5
s0=1001


QUAD_LOSS=function(s,hs,J,n,alpha,l0,l1,p0,p1,h0,s0)
{
ls= length(s)
lh=length(hs)  
EST=array(NA,c(J,ls,lh))
for (j in 1:J)
{
  x=rmixing(n,alpha,l0,l1,p0,p1)
  for (h in 1:lh) 
     {
      EST[j,,h]=sm.density(x,h=hs[h],display='none',ylim=c(0,0.4),nbins=0,eval.points=s)$estimate
     }
}
BIAS=apply(EST,c(2,3),mean)-dmixing(s,alpha,l0,l1,p0,p1)
VAR=apply(EST,c(2,3),var)
EQ=BIAS^2+VAR

nl=2
if (!is.null(s0)) nl=nl+1
  
layout(matrix(c(1:3,rep(4,3),5:(3*nl+1)),byrow=TRUE, ncol=3))
plot(hs,abs(apply(BIAS,2,mean)),type='l',ylab='|BIAS|')
plot(hs,apply(VAR,2,mean),type='l',ylab='VAR')
plot(hs,apply(EQ,2,mean),type='l',ylab='EQ')
abline(v=sm.density(x,method='normal',display="none")$h,col='blue')
abline(v=sm.density(x,method='sj',display="none")$h,col='green')
abline(v=sm.density(x,method='cv',display="none")$h,col='red')


hopt=which(apply(EQ,2,mean)==min(apply(EQ,2,mean)))
if (is.null(h0)) h0=hopt
EST2=EST[,,h0]

plot(s,EST2[1,],type='l',ylab='Estimates',main=paste('h=',hs[h0],sep=''))
for (j in 1:J) lines(s,EST2[j,])
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

if (!is.null(h0)) 
  {
  plot(s,abs(BIAS[,h0]),type='l',ylab='|BIAS|',main=paste('h=',hs[h0],sep=''))
  plot(s,VAR[,h0],type='l',ylab='VAR',main=paste('h=',hs[h0],sep=''))
  plot(s,EQ[,h0],type='l',ylab='EQ',main=paste('h=',hs[h0],sep=''))
  }
if (!is.null(s0))
  {
  plot(hs,abs(BIAS[s0,]),type='l',ylab='|BIAS|',main=paste('s=',s[s0],sep=''))
  plot(hs,VAR[s0,],type='l',ylab='VAR',main=paste('s=',s[s0],sep=''))
  plot(hs,EQ[s0,],type='l',ylab='EQ',main=paste('s=',s[s0],sep=''))
  }
return(list(BIAS=BIAS,VAR=VAR,EQ=EQ,hopt=hs[hopt]))
}

RES=QUAD_LOSS(s,hs,J,n,alpha,l0,l1,p0,p1,NULL,NULL)

Automatic choice of h

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,kernel='e'),col='blue')
lines(density(x,bw='nrd',kernel='e'))
lines(density(x,bw='SJ',kernel='e'),col='green')
lines(density(x,bw='ucv',kernel='e'),col='orange')
Warning in bw.ucv(x): minimum occurred at one end of the range

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
sm.density(x,method='normal',kernel='e',add=T)
sm.density(x,method='sj',kernel='e',col='green',add=T)
sm.density(x,method='cv',kernel='e',col='orange',add=T)

1.2.2. Come back to real world data

# Galaxies 
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='e',bw='ucv')$y))
lines(density(galaxies,kernel='rectangular',bw='ucv'),col='blue')
lines(density(galaxies,kernel='e',bw='ucv'),col='orange')

# Faithful 
hist(waiting,freq=F,ylim=range(density(waiting,kernel='e',bw='ucv')$y))
lines(density(waiting,kernel='rectangular',bw='ucv'),col='blue')
lines(density(waiting,kernel='e',bw='ucv'),col='orange')

hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='e',bw='ucv')$y))
lines(density(eruptions,kernel='rectangular',bw='ucv'),col='blue')
lines(density(eruptions,kernel='e',bw='ucv'),col='orange')

## 1.4. Applications
### 1.4.1. Mode estimation

density.mode=function(x,a,b,M,bw='ucv',kernel='e',plot=T)
{
  disc=seq(a,b,length.out=M)
  dens=density(x,from=a,to=b,n=M,bw=bw,kernel=kernel)$y
  mod=disc[(order(dens))[M]]
  max=max(dens)
  if (plot) {plot(disc,dens,type='l')}
  return(list(mode=mod,max=max))
}

sm.mode=function(x,a,b,M,method='cv',plot=T)
{
  disc=seq(a,b,length.out=M)
  display="line"
  if (plot) {display="none"}
  dens=sm.density(x,eval.points=disc,method=method,nbins=0)$estimate
  mod=disc[(order(dens))[M]]
  max=max(dens)
  return(list(mode=mod,max=max))
}

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,bw='ucv',kernel='e'),col='orange')
Warning in bw.ucv(x): minimum occurred at one end of the range
re=density.mode(x,-10,10,1000,bw='ucv',kernel='e',F)
Warning in bw.ucv(x): minimum occurred at one end of the range
segments(re$mod,0,re$mod,re$max)
re1=density.mode(x,-10,3,1000,bw='ucv',kernel='e',F)
Warning in bw.ucv(x): minimum occurred at one end of the range
segments(re1$mod,0,re1$mod,re1$max)

1.4.1. Clustering from density level set

sm.clustering.level.sets=function(x,level=0.20,a=min(x),b=max(x),M=1000,method='sj',plot=T)
{
  disc=seq(a,b,length.out=M)
  n=length(x)
  o=order(x)
  x.and.disc=c(x,disc)
  #type=
  names(x.and.disc)=rep(c('data','disc'),c(n,M))
  x1=sort(x.and.disc)
  type1=names(x1)
  n1=length(x1)
  dens=sm.density(x,eval.points=x1,method=method,nbins=0)$estimate
  adjusted.level=quantile(dens,level)
  is.over.level=dens>adjusted.level
  cluster=rep(0,M+n)
  k=1
  for (j in 1:(M+n)) 
    {
    if (j>1) {if (is.over.level[j]==0 & is.over.level[j-1]==1 ) {k=k+1}}
    if (is.over.level[j]==1) {cluster[j]=k}
    }    
  if (plot) {plot(x1,dens,type='l')
             abline(adjusted.level,0,col='orange')}

  k=max(cluster)
  cluster.bounds=matrix(NA,2,k)
  palette=rainbow(k)
  for (j in 1:k) 
    {
      cluster.bounds[,j]=range(x1[cluster==j])
      if (plot) { segments(cluster.bounds[1,j],adjusted.level,cluster.bounds[2,j],adjusted.level,col=palette[j])}
    }
  cluster.on.data=(cluster[type1=='data'])
  #cluster.on.data[cluster.on.data==0]=NA
  return(list(cluster=cluster.on.data,cluster.bounds=cluster.bounds))
}
sm.clustering.level.sets(x,0.3)

$cluster
  [1] 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [75] 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 0 0 0

$cluster.bounds
          [,1]      [,2]
[1,] -2.241888  5.605418
[2,]  2.595019 10.471365

1.4.2. Clustering from density extrema

sm.clustering.extrema=function(x,tau=10,a=min(x),b=max(x),M=1000,method='sj',plot=T)
{
  disc=seq(a,b,length.out=M)
  n=length(x)
  dens=sm.density(x,eval.points= disc,method=method,nbins=0)$estimate
  inc=rep(0,M)
  valleys=rep(0,M)
  k=1
  for (j in 1:M) 
    {
    i1=max(1,j-tau)
    i2=min(M,j+tau)
    ratio=(dens[i2]-dens[i1])/(disc[i2]-disc[i1])
    if (ratio>0) {inc[j]=1}
    if (j>1) {if (inc[j]==0 & inc[j-1]==1 ) {k=k+1}}
    valleys[j]=k
    }    
  if (plot) {plot(disc,dens,type='l')}

  k=max(valleys)
  thresholds=rep(NA,k)
  mins=rep(NA,k)
  for (j in 1:k) 
    {
      candidates=disc[valleys==j]
      thresholds[j]=candidates[which.min(dens[valleys==j])]
      mins[j]=min(dens[valleys==j])
      #if (plot) {segments(thresholds[j],0,thresholds[j],mins[j],col='orange')}
  }
  n=length(x)
  cluster=rep(0,n)
  for (j in 1:k) {if (j==1) {cluster[x==thresholds[j]]=j}
cluster[x>thresholds[j]]=j}
  cluster.disc=rep(0,M)
  for (j in 1:k) {if (j==1) {cluster.disc[disc==thresholds[j]]=j}
                  cluster.disc[disc>thresholds[j]]=j}
  K=max(cluster.disc)
  palette=rainbow(K+1)
  if (plot) {for (j in 0:K) {if (sum(cluster.disc==j)!=0) {
  disc.j=disc[cluster.disc==j]
                  dens.j=dens[cluster.disc==j]
                  n.j=sum(cluster.disc==j)
                  polygon(c(disc.j[1],disc.j,disc.j[n.j]),c(0,dens.j,0),
        col = palette[j+1])}  
  } }
  #cluster.on.data[cluster.on.data==0]=NA
  return(list(cluster=cluster,thresholds=thresholds))
}
sm.clustering.extrema(x,10)

$cluster
  [1] 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 1 2 2 2 1 1 2 1 2 2 2 1 2 2
 [38] 1 2 2 1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2 1 2 2 1
 [75] 2 1 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 2 1
[112] 2 1 2 1 2 2 1 2 2 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 1 2 1
[149] 1 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2
[186] 1 1 2 2 2 2 2 2 2 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2
[223] 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2
[260] 2 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1
[297] 2 2 2 2

$thresholds
[1] -3.832976  4.524096 11.599029

2. Regression estimation

2.1 Experiments

data("pressure")
t=pressure$temperature
p=pressure$pressure
plot(t,p)

res=sm.regression(t,p,method='cv')

names(res)
 [1] "eval.points" "estimate"    "model.y"     "se"          "sigma"      
 [6] "h"           "hweights"    "weights"     "data"        "call"       
res$h
[1] 7.034694
res$eval.points
 [1]   0.000000   7.346939  14.693878  22.040816  29.387755  36.734694
 [7]  44.081633  51.428571  58.775510  66.122449  73.469388  80.816327
[13]  88.163265  95.510204 102.857143 110.204082 117.551020 124.897959
[19] 132.244898 139.591837 146.938776 154.285714 161.632653 168.979592
[25] 176.326531 183.673469 191.020408 198.367347 205.714286 213.061224
[31] 220.408163 227.755102 235.102041 242.448980 249.795918 257.142857
[37] 264.489796 271.836735 279.183673 286.530612 293.877551 301.224490
[43] 308.571429 315.918367 323.265306 330.612245 337.959184 345.306122
[49] 352.653061 360.000000
res$estimate
 [1] 1.999996e-04 5.675549e-04 9.324045e-04 1.671898e-03 3.456180e-03
 [6] 5.149423e-03 1.085884e-02 1.972357e-02 2.846339e-02 4.836680e-02
[11] 7.041253e-02 9.758724e-02 1.635183e-01 2.291547e-01 3.373181e-01
[16] 5.150429e-01 6.883220e-01 1.018800e+00 1.423762e+00 1.837755e+00
[21] 2.665554e+00 3.527883e+00 4.566661e+00 6.266176e+00 7.944415e+00
[26] 1.035057e+01 1.348534e+01 1.658134e+01 2.152680e+01 2.696677e+01
[31] 3.269061e+01 4.175806e+01 5.088840e+01 6.170955e+01 7.610754e+01
[36] 9.033653e+01 1.096621e+02 1.321099e+02 1.545683e+02 1.863899e+02
[41] 2.194453e+02 2.548252e+02 3.022988e+02 3.495649e+02 4.055299e+02
[46] 4.725901e+02 5.391172e+02 6.237562e+02 7.149016e+02 8.060000e+02
n=300
x=runif(n,.1,3)
y=10*exp(-3*x)+7*cos(2*pi*x)/sqrt(x)+rnorm(n,0,2*exp(x/7))
plot(x,y)

res=sm.regression(x,y,h=.007)

res=sm.regression(x,y,h=.07)

res=sm.regression(x,y,h=.7)

res=sm.regression(x,y,method='cv')
z=seq(.1,3,len=1000)
lines(z,10*exp(-3*z)+7*cos(2*pi*z)/sqrt(z),col='red')
sm.regression(x,y,add=T,col='green')
sm.regression(x,y,add=T,col='blue',method='aicc')

names(res)
 [1] "eval.points" "estimate"    "model.y"     "se"          "sigma"      
 [6] "h"           "hweights"    "weights"     "data"        "call"       
res$h
[1] 0.05477502
res$eval.points
 [1] 0.1273684 0.1858097 0.2442510 0.3026922 0.3611335 0.4195747 0.4780160
 [8] 0.5364572 0.5948985 0.6533397 0.7117810 0.7702223 0.8286635 0.8871048
[15] 0.9455460 1.0039873 1.0624285 1.1208698 1.1793110 1.2377523 1.2961935
[22] 1.3546348 1.4130761 1.4715173 1.5299586 1.5883998 1.6468411 1.7052823
[29] 1.7637236 1.8221648 1.8806061 1.9390474 1.9974886 2.0559299 2.1143711
[36] 2.1728124 2.2312536 2.2896949 2.3481361 2.4065774 2.4650187 2.5234599
[43] 2.5819012 2.6403424 2.6987837 2.7572249 2.8156662 2.8741074 2.9325487
[50] 2.9909899
res$estimate
 [1] 20.11276678 12.45629990  5.71176184 -0.28079430 -4.42235490 -6.28804198
 [7] -6.69466615 -6.37143986 -5.26706665 -3.33710116 -1.11549263  0.91240486
[13]  3.06732639  5.34587969  7.02740926  6.76069413  5.49063965  3.73246571
[19]  1.96408487  0.04600724 -1.81258233 -3.40755684 -4.70969353 -5.71062079
[25] -6.14054995 -5.36660502 -3.66340610 -1.43509827  0.66264250  2.38432873
[31]  4.00777965  5.05853088  4.73226831  4.48533112  3.97167792  2.60929584
[37]  1.26231794 -0.34652994 -1.96030997 -3.05810007 -3.23771757 -3.11169427
[43] -2.91278296 -2.36164057 -1.36826755 -0.02259091  1.74685948  3.12868144
[49]  3.93435717  5.22962117
res=sm.regression(x,y,method='cv',eval.points=sort(x))

plot(res$estimate,y[order(x)])
abline(0,1)

2.2 Compute CV

Compute_CV=function(x,y,method,weights=NA)
{
  hopt=sm.regression(x,y,method=method,display='none')$h
  n=length(x)
  if (is.na(weights)) weights=rep(1,n)
  CV=0
  for (i in 1:n)
  {
    CV=CV+(y[i]-sm.regression(x[-i],y[-i],h=hopt,eval.points=x[i],display='none')$estimate)^2*weights[i] 
  }
  return(CV)
}
Compute_CV(x,y,'cv')
[1] 1828.23

2.3 Discrimination

load('Dopage.RData')
hema
 [1] 35.81801 57.69442 54.68696 45.73142 57.02237 57.03312 46.94246 51.21867
 [9] 37.23734 44.22872 43.19019 55.46140 48.31791 43.52074 44.31600 46.83335
[17] 43.98864 45.58534 40.67590 41.64725 46.58286 45.40957 46.14132 41.32432
[25] 51.92825 57.57791 45.10522 49.81766 54.59558 59.94339 46.68741 45.03787
[33] 43.78030 44.32881 47.85452 55.01740 49.64086 44.75317 53.80269 41.54966
[41] 52.33685 43.40389 57.02227 45.73978 56.13190 56.19256 45.33341 56.38840
[49] 45.36690 55.29222 42.93230 44.22211 48.11121 44.84885 46.35119 49.09645
[57] 46.76331 50.31146 44.09170 59.08955 42.67297 47.43126 54.06605 56.46029
[65] 39.68902 52.62125 45.54387 45.69921 53.13572 43.71261 34.72460 48.33640
[73] 51.22310 39.82190 45.93546
test
 [1] "negatif" "positif" "positif" "negatif" "positif" "positif" "negatif"
 [8] "negatif" "negatif" "negatif" "negatif" "positif" "positif" "negatif"
[15] "negatif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
[22] "negatif" "negatif" "negatif" "negatif" "positif" "negatif" "positif"
[29] "positif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
[36] "positif" "negatif" "negatif" "positif" "negatif" "negatif" "negatif"
[43] "positif" "negatif" "positif" "positif" "negatif" "positif" "negatif"
[50] "positif" "negatif" "negatif" "positif" "negatif" "negatif" "negatif"
[57] "negatif" "negatif" "negatif" "positif" "negatif" "negatif" "positif"
[64] "positif" "negatif" "positif" "negatif" "negatif" "positif" "negatif"
[71] "negatif" "negatif" "positif" "negatif" "negatif"

ROC Curve

####### ROC 
ROC=function(z,p1,plot=FALSE)
{
  p=c(-0.0001,sort(unique(p1)),1.0001)#seq(-0.01,1.01,0.01)c(-0.0001,sort(unique(p1))-0.00000000001,1.0001)
  lp=length(p)
  ROC=matrix(NA,lp,2)
  for (s in 1:lp)
  {
    ROC[s,1]=mean(p1[z==0]>=p[s])
    ROC[s,2]=mean(p1[z==1]>=p[s])  
  }
  #AUC=sum((ROC[-(lp),2])*(ROC[-(lp),1]-ROC[-(1),1]))
  AUC=sum((ROC[-(lp),2]+ROC[-1,2])*(ROC[-(lp),1]-ROC[-(1),1])/2)
  
  colnames(ROC)=c("FPR","TPR")
  if (plot)  
  {
    plot(ROC,type='l',main=paste('AUC =', AUC))
    abline(0,1,col='orange')
  }
  
  return(list(ROC=ROC,AUC=AUC))
}

Estimated Bayes estimator

#######
Classif_NP=function(X,Y,X0=NA,plot=FALSE)
{
  X=as.matrix(X)
  n=length(Y)
  V=sort(unique(Y))
  n_V=length(V)
  Prob=matrix(NA,n,n_V)
  colnames(Prob)=V
  Class=rep(NA,n)
  if (!is.na(max(X0)))
  {
    X0=as.matrix(X0)
    P0=matrix(NA,nrow(X0),n_V)
    Class0=rep(NA,n)
  }
  for (v in 1:n_V)
  {
    z=as.numeric(Y==V[v])
    for (i in 1:n )
    {
      value=sm.regression(X[-i,],z[-i], eval.points=X,eval.grid=FALSE,display='none',method='cv')$estimate[i]
      if (!is.na(value)) {Prob[i,v]=value}
      if (is.na(value)) {Prob[i,v]=mean(z[-i])}
      }
    if (!is.na(max(X0))) {P0[,v]=sm.regression(X,z,eval.points=X0,eval.grid=FALSE,display='none',method='cv')$estimate
                          P0[is.na(P0[,v]),v]=mean(z)}
  }
  if (n_V==2) {Roc=ROC(Y==V[2],Prob[,2],plot)}
  Class=V[apply(Prob,1,which.max)]
  V_est=sort(unique(Class))
  if (length(V_est)==n_V){M_table=table(Y,Class)}
  else {
    M_table=matrix(0,n_V,n_V)
    M_table0=table(Y,Class)
    for (j in 1:length(V_est)) {M_table[,which(V==V_est[j])]=M_table0[,j]}
  }
  Err=1-(sum(diag(M_table))/sum(M_table))
  if (!is.na(max(X0))) {Class0=V[apply(P0,1,which.max)]}
  if (!is.na(max(X0))) {return(list(Class=Class, Prob=Prob, M_table=M_table, Err=Err, Class0=Class0,Prob0=P0,Auc=ifelse(n_V==2,Roc$AUC,NA)))}
  else {return(list(Class=Class, Prob=Prob, M_table=M_table, Err=Err,Auc=ifelse(n_V==2,Roc$AUC,NA)))}
}


(R=Classif_NP(hema,test))
$Class
 [1] "negatif" "positif" "positif" "negatif" "positif" "positif" "negatif"
 [8] "positif" "negatif" "negatif" "negatif" "positif" "negatif" "negatif"
[15] "negatif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
[22] "negatif" "negatif" "negatif" "positif" "positif" "negatif" "negatif"
[29] "positif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
[36] "positif" "negatif" "negatif" "positif" "negatif" "positif" "negatif"
[43] "positif" "negatif" "positif" "positif" "negatif" "positif" "negatif"
[50] "positif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
[57] "negatif" "negatif" "negatif" "positif" "negatif" "negatif" "positif"
[64] "positif" "negatif" "positif" "negatif" "negatif" "positif" "negatif"
[71] "negatif" "negatif" "negatif" "negatif" "negatif"

$Prob
          negatif       positif
 [1,]  1.00154507 -0.0015450745
 [2,] -0.04382121  1.0438212062
 [3,]  0.15434486  0.8456551429
 [4,]  0.90091255  0.0990874512
 [5,] -0.01638242  1.0163824152
 [6,] -0.01690106  1.0169010600
 [7,]  0.81826853  0.1817314683
 [8,]  0.44026871  0.5597312871
 [9,]  1.00271923 -0.0027192346
[10,]  0.97256267  0.0274373255
[11,]  0.99912319  0.0008768104
[12,]  0.08722628  0.9127737158
[13,]  0.74966874  0.2503312641
[14,]  0.99257122  0.0074287785
[15,]  0.96949129  0.0305087136
[16,]  0.85954431  0.1404556941
[17,]  0.98031247  0.0196875314
[18,]  0.90954426  0.0904557440
[19,]  1.01159987 -0.0115998736
[20,]  1.01219351 -0.0121935133
[21,]  0.84465421  0.1553457920
[22,]  0.91948677  0.0805132308
[23,]  0.87502350  0.1249764977
[24,]  1.01244526 -0.0124452622
[25,]  0.37195543  0.6280445651
[26,] -0.03976347  1.0397634697
[27,]  0.93550456  0.0644954388
[28,]  0.70593566  0.2940643421
[29,]  0.16263064  0.8373693607
[30,] -0.10987017  1.1098701736
[31,]  0.83712560  0.1628744014
[32,]  0.93883629  0.0611637069
[33,]  0.98622358  0.0137764204
[34,]  0.96902890  0.0309710958
[35,]  0.74592644  0.2540735614
[36,]  0.12494026  0.8750597443
[37,]  0.58845052  0.4115494755
[38,]  0.95204114  0.0479588551
[39,]  0.23653296  0.7634670375
[40,]  1.01233017 -0.0123301720
[41,]  0.33199241  0.6680075853
[42,]  0.99507654  0.0049234647
[43,] -0.01637771  1.0163777104
[44,]  0.90040899  0.0995910059
[45,]  0.03615177  0.9638482341
[46,]  0.03197847  0.9680215341
[47,]  0.92364019  0.0763598122
[48,]  0.01908133  0.9809186730
[49,]  0.92182592  0.0781740837
[50,]  0.10130621  0.8986937855
[51,]  1.00314294 -0.0031429360
[52,]  0.97278976  0.0272102447
[53,]  0.76563576  0.2343642391
[54,]  0.94776350  0.0522365039
[55,]  0.86088772  0.1391122774
[56,]  0.63806219  0.3619378147
[57,]  0.83158518  0.1684148177
[58,]  0.52611805  0.4738819468
[59,]  0.97711055  0.0228894489
[60,] -0.07255244  1.0725524359
[61,]  1.00631785 -0.0063178519
[62,]  0.78037033  0.2196296735
[63,]  0.21164314  0.7883568648
[64,]  0.01457321  0.9854267891
[65,]  1.00865833 -0.0086583277
[66,]  0.35111770  0.6488822958
[67,]  0.91193400  0.0880660046
[68,]  0.90284398  0.0971560181
[69,]  0.30071516  0.6992848429
[70,]  0.98798550  0.0120145043
[71,]  1.00131155 -0.0013115545
[72,]  0.70514409  0.2948559066
[73,]  0.69715038  0.3028496153
[74,]  1.00909475 -0.0090947457
[75,]  0.88832274  0.1116772601

$M_table
         Class
Y         negatif positif
  negatif      47       3
  positif       5      20

$Err
[1] 0.1066667

$Auc
[1] 0.7456
plot(hema,R$Prob[,2])

Classif_NP(hema,test,c(37,42,58,57))
$Class
 [1] "negatif" "positif" "positif" "negatif" "positif" "positif" "negatif"
 [8] "positif" "negatif" "negatif" "negatif" "positif" "negatif" "negatif"
[15] "negatif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
[22] "negatif" "negatif" "negatif" "positif" "positif" "negatif" "negatif"
[29] "positif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
[36] "positif" "negatif" "negatif" "positif" "negatif" "positif" "negatif"
[43] "positif" "negatif" "positif" "positif" "negatif" "positif" "negatif"
[50] "positif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
[57] "negatif" "negatif" "negatif" "positif" "negatif" "negatif" "positif"
[64] "positif" "negatif" "positif" "negatif" "negatif" "positif" "negatif"
[71] "negatif" "negatif" "negatif" "negatif" "negatif"

$Prob
          negatif       positif
 [1,]  1.00154507 -0.0015450745
 [2,] -0.04382121  1.0438212062
 [3,]  0.15434486  0.8456551429
 [4,]  0.90091255  0.0990874512
 [5,] -0.01638242  1.0163824152
 [6,] -0.01690106  1.0169010600
 [7,]  0.81826853  0.1817314683
 [8,]  0.44026871  0.5597312871
 [9,]  1.00271923 -0.0027192346
[10,]  0.97256267  0.0274373255
[11,]  0.99912319  0.0008768104
[12,]  0.08722628  0.9127737158
[13,]  0.74966874  0.2503312641
[14,]  0.99257122  0.0074287785
[15,]  0.96949129  0.0305087136
[16,]  0.85954431  0.1404556941
[17,]  0.98031247  0.0196875314
[18,]  0.90954426  0.0904557440
[19,]  1.01159987 -0.0115998736
[20,]  1.01219351 -0.0121935133
[21,]  0.84465421  0.1553457920
[22,]  0.91948677  0.0805132308
[23,]  0.87502350  0.1249764977
[24,]  1.01244526 -0.0124452622
[25,]  0.37195543  0.6280445651
[26,] -0.03976347  1.0397634697
[27,]  0.93550456  0.0644954388
[28,]  0.70593566  0.2940643421
[29,]  0.16263064  0.8373693607
[30,] -0.10987017  1.1098701736
[31,]  0.83712560  0.1628744014
[32,]  0.93883629  0.0611637069
[33,]  0.98622358  0.0137764204
[34,]  0.96902890  0.0309710958
[35,]  0.74592644  0.2540735614
[36,]  0.12494026  0.8750597443
[37,]  0.58845052  0.4115494755
[38,]  0.95204114  0.0479588551
[39,]  0.23653296  0.7634670375
[40,]  1.01233017 -0.0123301720
[41,]  0.33199241  0.6680075853
[42,]  0.99507654  0.0049234647
[43,] -0.01637771  1.0163777104
[44,]  0.90040899  0.0995910059
[45,]  0.03615177  0.9638482341
[46,]  0.03197847  0.9680215341
[47,]  0.92364019  0.0763598122
[48,]  0.01908133  0.9809186730
[49,]  0.92182592  0.0781740837
[50,]  0.10130621  0.8986937855
[51,]  1.00314294 -0.0031429360
[52,]  0.97278976  0.0272102447
[53,]  0.76563576  0.2343642391
[54,]  0.94776350  0.0522365039
[55,]  0.86088772  0.1391122774
[56,]  0.63806219  0.3619378147
[57,]  0.83158518  0.1684148177
[58,]  0.52611805  0.4738819468
[59,]  0.97711055  0.0228894489
[60,] -0.07255244  1.0725524359
[61,]  1.00631785 -0.0063178519
[62,]  0.78037033  0.2196296735
[63,]  0.21164314  0.7883568648
[64,]  0.01457321  0.9854267891
[65,]  1.00865833 -0.0086583277
[66,]  0.35111770  0.6488822958
[67,]  0.91193400  0.0880660046
[68,]  0.90284398  0.0971560181
[69,]  0.30071516  0.6992848429
[70,]  0.98798550  0.0120145043
[71,]  1.00131155 -0.0013115545
[72,]  0.70514409  0.2948559066
[73,]  0.69715038  0.3028496153
[74,]  1.00909475 -0.0090947457
[75,]  0.88832274  0.1116772601

$M_table
         Class
Y         negatif positif
  negatif      47       3
  positif       5      20

$Err
[1] 0.1066667

$Class0
[1] "negatif" "negatif" "positif" "positif"

$Prob0
            [,1]         [,2]
[1,]  1.00181472 -0.001814722
[2,]  1.01045534 -0.010455342
[3,] -0.04880557  1.048805567
[4,] -0.01445100  1.014450998

$Auc
[1] 0.7456

3. Multivariate and Functional case

3.1 Multivariate case

3.1.1 Regression

load('Randonnee.RData')
library(knitr)
library(kableExtra)

kable(cbind(long,lat,alti),'html',caption="Data given in Randonnee.RData") %>%
  kable_styling() %>%
  scroll_box(width = "100%", height='7cm')
Data given in Randonnee.RData
long lat alti
99.0624679 53.3076627 1503.552
-6.8700422 28.2190488 1565.064
-3.9917884 92.2394410 1523.288
31.8887100 -9.1710346 1495.187
20.8955966 25.1860652 1612.269
15.3682732 80.5044866 1511.161
11.4690357 88.5174201 1503.051
79.8319344 102.4300348 1535.229
56.0075673 107.6692620 1503.432
29.4260498 16.7352382 1573.805
-4.3391908 102.0056042 1478.104
72.7352515 32.1038612 1557.071
80.2107291 0.1943822 1509.054
13.0087572 93.5295195 1519.488
17.4792537 -7.7909738 1517.155
35.5514487 5.6133995 1532.295
13.5712102 25.8517935 1614.147
2.0481796 -7.4330306 1508.660
22.9454398 27.9979667 1606.543
36.9931913 31.7602686 1551.006
17.0726327 80.8224924 1498.533
97.9897970 77.7829623 1547.869
100.2870167 61.8244704 1510.328
105.5622748 106.6027542 1507.775
21.9907795 12.9867447 1559.080
46.8235776 29.8245296 1565.675
45.4129347 61.9143907 1490.260
34.3569008 93.7161598 1505.586
35.6348959 -3.0641687 1517.431
42.1465047 90.6220438 1496.808
54.9246438 71.5075653 1522.724
-0.6032085 107.4425999 1503.936
38.9608041 79.0489369 1504.162
107.5811816 23.9735269 1519.739
52.8454450 100.7978796 1512.662
50.1340882 -0.9997788 1531.310
7.7555722 32.0321676 1648.128
-5.8852304 3.6869886 1522.290
105.2549906 78.7011588 1518.597
47.1467618 66.8373312 1522.303
-4.6626037 92.5977188 1479.269
8.7576174 34.3697844 1641.704
52.2500823 13.6763844 1536.718
-7.6250490 -0.9289558 1501.063
36.5993508 54.0141936 1499.579
92.0424269 84.5729018 1555.299
103.4379530 33.0318845 1510.353
50.7240071 2.2425787 1509.026
97.4716941 77.9736253 1515.126
73.7016949 99.7308117 1536.054
93.0219061 67.1765613 1547.277
65.6176874 98.6371979 1526.580
-1.3699311 73.6878124 1495.551
52.3760663 78.5963519 1530.826
84.7114132 42.2642248 1495.388
107.5771911 48.0871036 1506.657
64.4604991 27.6326412 1591.445
59.9686836 51.0937702 1505.332
8.4859424 75.3498196 1493.466
60.8453952 81.6616607 1542.620
32.6244900 26.3138900 1555.251
109.0847392 29.1766504 1516.603
72.0450547 19.7782183 1586.880
62.9426072 27.6257777 1591.079
49.7946765 51.4461836 1512.832
-3.7844638 108.6813870 1496.539
14.6025297 102.8902643 1511.974
68.9487006 98.7188453 1524.002
19.4557040 103.9766379 1498.990
23.4424702 91.6052843 1507.005
96.9559850 17.2084007 1540.036
17.4085176 16.5421165 1569.178
7.6359436 93.0814601 1499.439
105.9557061 88.8294518 1510.976
-0.6395778 27.0807526 1583.589
40.0386443 95.0945388 1494.300
108.1165074 91.5913831 1499.777
37.4706876 36.5362536 1548.957
85.6727815 15.5733686 1548.695
83.4007558 32.6764199 1546.176
34.5829461 80.8233364 1503.971
74.1981223 56.3901347 1552.938
65.7956928 21.5336391 1590.259
63.1200929 44.2666265 1501.393
54.6831032 75.6658447 1534.508
25.2570909 8.4122134 1540.408
109.0367705 -4.0753386 1503.623
45.4518286 7.7297729 1527.511
77.6834594 45.9806080 1499.680
40.0775024 78.3242334 1501.483
46.8420351 9.7027086 1520.665
67.0032970 47.9183023 1531.010
62.9415996 28.0067210 1580.939
4.6844503 59.6427374 1497.629
12.4587184 55.0600018 1535.396
97.3825485 59.4960008 1513.649
0.6584921 90.8339782 1488.929
34.1886764 36.2218561 1548.870
-3.9022830 -6.3884918 1494.956
15.7665207 64.0273335 1494.208
109.2956715 107.3541429 1498.673
103.5520772 6.5037241 1505.485
73.3759137 22.8530218 1614.789
108.1589985 64.7802229 1505.992
38.7293840 58.6801093 1505.095
26.9991154 52.6071416 1543.953
93.2730551 14.1047208 1539.745
74.6520478 74.5988890 1719.653
-3.8600043 32.2399566 1569.702
91.0284812 61.8065544 1530.437
39.7020352 44.2541240 1507.814
89.3797159 -0.0059296 1513.673
8.9815342 12.6989354 1558.054
37.3474934 83.3984831 1521.442
82.5426909 72.2339545 1730.754
41.5408641 -3.0519692 1507.140
69.1754561 49.5537411 1536.695
107.2183426 59.4791128 1494.653
95.5583194 36.3866017 1522.613
45.1385816 32.8278674 1529.149
71.4557269 53.9506069 1527.618
0.6201439 52.5379462 1534.111
86.4482111 -1.9838803 1485.289
49.4328418 57.9250941 1511.933
8.9252843 -6.5767055 1510.112
48.3882847 15.9442132 1544.139
101.8168975 85.5506530 1505.108
73.1332982 36.1948201 1537.994
78.2796414 75.6409429 1763.630
33.9245340 69.5515850 1504.757
64.2372093 101.3554996 1507.480
54.9992699 56.6553987 1510.998
34.5305953 9.1060737 1533.052
86.1025130 53.3294582 1527.883
17.8944715 18.5229879 1591.969
65.3099775 92.7764085 1540.220
68.3107806 78.4274628 1609.276
-9.1280097 74.9568642 1500.164
-8.4378068 7.7611201 1515.473
-9.4375850 58.2351528 1500.782
72.9383652 9.1428750 1545.672
3.1518398 44.8344709 1593.204
-4.5201100 82.0173986 1506.172
85.1011407 94.7242777 1540.134
58.4218492 85.5438200 1514.645
21.5381986 84.0624910 1490.193
79.5683257 107.7563988 1519.539
16.8094861 0.1065805 1518.925
13.7168195 52.0209065 1557.457
61.6293227 22.2596313 1603.621
68.8874839 72.1662832 1591.796
31.9630115 53.6803757 1522.681
-2.4530409 104.8597823 1496.549
67.5898129 64.8423330 1574.086
-7.8298760 86.5592916 1505.518
106.1900164 109.1123272 1505.576
30.3883853 70.1951086 1501.087
37.8230056 88.7199266 1506.887
85.1603546 60.2615274 1588.606
11.7026249 76.6645402 1495.859
-1.5148323 36.7445473 1582.416
80.6039050 108.0380414 1492.412
42.9912725 23.7753807 1542.679
65.6447334 51.4841565 1528.102
31.0267306 82.7948433 1496.188
15.2377335 60.5768411 1516.101
35.1865419 32.5634608 1557.464
59.5301555 44.2504127 1521.483
93.0327959 66.2506154 1540.498
19.7201658 20.2465274 1598.686
4.4496954 60.1801283 1517.926
43.5310138 89.3777994 1512.035
57.3573328 66.7790963 1515.571
96.1369763 99.0289473 1507.688
53.9646099 38.8948529 1522.677
6.4655638 55.8074369 1521.504
109.9032347 14.6825246 1513.087
57.0984624 80.8084841 1528.505
108.2334729 -7.0929847 1508.686
66.5735029 16.4661541 1569.290
26.3783911 74.6614091 1489.932
95.4501844 92.9089064 1525.671
12.1398498 -1.6929547 1516.118
61.3491014 -3.2044426 1497.463
97.0415713 92.2378615 1507.057
67.8564440 57.2680875 1536.328
94.5919541 17.4978882 1538.884
107.7176833 48.5589143 1500.362
86.2763029 52.1070050 1527.315
109.9107141 85.6347466 1509.714
82.0665086 102.9683853 1507.577
74.3138162 72.2160242 1685.401
32.8671800 107.6644860 1503.280
74.6963442 26.8117389 1586.010
24.5364777 75.7511033 1495.289
64.5714931 40.3632850 1511.456
29.4825232 36.9292619 1589.894
42.2030134 95.1776168 1505.560
32.9716050 12.2117467 1553.082
47.3855472 74.9843602 1537.770
32.9537145 16.3360995 1574.133
19.7007396 86.4568328 1487.686
82.3053686 85.2028623 1698.334
29.7235724 66.4521574 1509.959
41.6190261 99.0089405 1511.693
0.4811028 77.2090162 1503.002
33.8853365 31.3755255 1569.472
69.1828809 -0.2142083 1484.409
-8.5955022 68.7260890 1498.053
83.8354765 80.6439016 1710.081
38.8785215 81.4825360 1509.792
101.6520975 95.0324957 1500.674
38.2653881 15.0770843 1554.486
92.0097578 79.4081350 1580.155
48.5082542 7.1348003 1499.173
37.4501140 0.8510836 1508.732
97.5671286 36.7153758 1514.219
32.2246511 47.0856551 1547.203
27.6389411 -4.2890589 1510.215
-9.0511564 93.6098017 1493.465
77.5580233 39.0210219 1550.051
94.9180675 40.9643174 1498.312
58.0855414 86.3287291 1528.816
41.4742304 85.9292547 1518.739
-4.9285801 19.5426376 1537.191
12.5128935 54.1810474 1522.310
98.8614764 29.0301088 1512.817
-2.2395305 13.0767943 1530.683
-7.8879634 96.4831019 1502.368
106.0577077 29.4490712 1521.374
56.8031475 103.1553699 1519.785
3.2581064 16.1983463 1553.751
55.3891077 81.7767231 1514.695
109.5003712 34.9192071 1507.356
103.9531725 2.6824025 1515.738
90.9163884 64.6651965 1565.437
17.5675969 40.4335865 1605.220
56.6706462 53.7304172 1530.561
103.7406261 108.0123845 1510.335
83.7976525 10.6557069 1517.980
36.3899025 58.6566456 1503.187
41.1020887 37.8390720 1530.025
-8.1780918 100.2869428 1519.485
11.0855115 82.6831211 1510.155
78.5711419 67.2791163 1704.259
10.5236860 19.0974620 1572.168
87.2162916 51.8274711 1526.432
88.9293157 85.9404894 1574.387
10.9053526 68.4225406 1505.185
9.4655780 81.5465188 1491.694
49.8283107 108.2866624 1508.596
-9.5947153 92.2925736 1499.622
84.1258040 96.2783463 1542.454
43.7018672 44.9876156 1516.929
39.2791223 80.1971819 1513.394
34.7361794 19.1695937 1561.411
59.4643598 34.0714970 1570.119
54.2132162 -0.7885425 1527.899
95.8608577 69.9028278 1516.370
79.3937709 8.9799858 1507.082
-3.4154369 74.7767093 1503.140
102.3425618 18.2671573 1507.488
42.2433895 75.0631941 1512.044
80.3533921 12.8802847 1550.120
-2.8782635 -1.4969069 1519.303
95.1028680 15.3441908 1528.015
53.0508449 67.9876337 1532.086
75.5722174 3.9519753 1502.610
92.1211206 17.0929100 1532.950
66.5940911 61.7554280 1547.222
68.3343318 24.4713866 1617.225
89.6319729 92.8701326 1535.141
100.8202775 87.0977263 1507.188
21.3615679 33.1135690 1628.742
88.6541885 39.6670205 1526.841
108.5622098 74.8217273 1485.196
56.0671732 2.7101703 1484.626
69.1604764 34.1565359 1550.667
63.3533009 91.0166136 1529.457
-1.9578196 98.7146702 1502.354
81.3425835 21.5284310 1589.093
44.2450981 57.6431321 1514.573
88.3049812 -8.4029509 1487.451
98.2021578 45.7207011 1481.716
11.6492440 64.9348700 1507.737
5.7902776 24.8026485 1599.414
82.7875774 59.4499204 1592.806
74.1220887 2.9185357 1502.794
32.0810399 57.3191678 1507.491
19.2687937 -0.0460234 1525.650
24.6226843 23.3138199 1599.437
66.6141810 17.6189217 1577.792
35.0466244 5.9158673 1538.361
61.7549079 39.3237693 1528.888
89.1798913 57.3417052 1548.715
68.3177293 3.7032293 1525.710
30.9856599 101.5114146 1496.134
-5.1436744 21.6430878 1556.844
-6.5555396 62.7678419 1513.506
9.8439612 49.0257246 1556.732
31.3041346 79.5129649 1504.517
2.0242539 11.9979869 1539.037
84.7063420 13.1007343 1557.251
29.3631448 -8.1769586 1503.023
67.0596468 54.3304944 1524.949
93.6544835 20.8858303 1522.962
95.7701951 109.8266496 1501.593
20.8136802 9.6575482 1552.333
89.8029411 -3.7470808 1498.926
89.6190648 104.9048206 1507.858
18.5791090 94.9981342 1514.110
68.5679271 26.6114738 1588.468
-2.7874155 52.1470068 1542.644
45.4848944 -1.7112577 1523.542
55.9512635 7.8452460 1506.643
48.4728493 103.3569716 1502.020
15.6096432 72.9310911 1503.216
77.1553687 32.2952721 1586.116
101.7259463 90.9876603 1532.920
91.0791836 50.7894269 1493.142
68.2606661 82.4318992 1604.794
6.7598813 96.3158633 1492.373
107.6118367 -0.7938033 1497.330
36.7417797 67.2738524 1499.485
11.3383602 11.4739348 1546.386
56.3474607 61.0645675 1523.533
49.9432404 44.6066225 1512.207
12.7349585 100.0015666 1500.048
34.2485292 90.7136576 1509.930
-1.1026503 29.0980841 1590.837
88.5980615 23.1009244 1552.859
93.1525725 13.3031028 1534.580
92.8625568 90.9390584 1524.078
58.3477348 1.2338420 1519.394
50.7536376 95.3763274 1498.563
72.8735053 21.9861983 1617.793
89.6411641 69.1690246 1581.261
25.1111707 56.3215340 1496.755
1.5955143 86.9238931 1492.788
65.3676301 32.1324569 1570.713
61.0056921 5.5268771 1504.325
80.1208224 6.9373866 1519.488
13.9519384 -3.6889649 1519.616
91.4471487 90.8848947 1531.403
35.9693894 -0.9320418 1509.471
91.3207917 96.3104715 1513.320
51.3916477 43.7737725 1498.221
101.1608726 -2.4532839 1502.029
18.7078511 64.4911674 1508.166
50.1847349 97.4818228 1508.136
-6.5284906 65.4102213 1495.612
22.9682395 78.3188111 1504.898
-1.6257895 22.5323168 1557.789
37.6809647 86.0740078 1505.012
44.5150829 -8.0919361 1492.447
98.6483570 37.1308551 1508.043
-3.8899612 63.9407826 1510.358
76.6220504 50.6024568 1542.991
34.5582256 6.0812392 1536.248
61.5165984 100.7611068 1505.314
1.4280745 -4.7681216 1501.668
9.9571036 108.8500554 1515.744
58.1042503 53.5467778 1530.612
97.6922949 21.7455534 1522.981
57.5637215 17.2815492 1557.595
73.2940064 86.8986099 1636.235
42.2275999 108.1269370 1513.672
79.2007804 26.6891237 1589.146
25.0378917 -7.3017076 1501.583
104.9990713 30.7436422 1517.994
60.1676537 38.1424053 1528.900
28.1064449 103.5866842 1501.682
46.2679811 45.6117505 1503.142
0.1100654 80.1602309 1481.154
9.7661822 20.6649067 1583.420
15.3392095 8.7165088 1546.996
86.2068609 24.2161395 1568.255
95.9371390 87.4804205 1505.517
71.5423485 75.8261241 1665.263
85.0595993 1.4235339 1522.612
62.7279188 35.0926339 1524.308
0.3784555 84.3519681 1500.357
109.1100813 -6.7318973 1504.116
10.1067326 8.1089910 1523.197
14.6993165 74.4807939 1505.789
19.4556634 5.5710324 1528.607
53.8164148 40.7650830 1529.546
2.2608089 -5.2131376 1515.577
69.6403102 95.0177066 1558.416
9.2092220 49.7994056 1572.438
67.8009084 44.0925053 1514.321
84.3480678 103.9824313 1536.524
61.4812275 62.2715877 1520.285
31.4714729 -8.9967737 1488.522
48.6934323 10.0242483 1527.049
35.9006849 109.7142090 1502.821
93.0243156 -7.7038707 1499.589
82.1181352 29.1630460 1561.115
55.5579532 34.3340920 1528.703
50.3538442 61.4322998 1517.249
65.3020222 6.8285881 1509.494
81.8677705 72.0445888 1734.414
72.2282170 95.8624118 1550.477
97.0193113 15.6787341 1499.625
41.4619855 24.8536569 1563.564
55.1013032 98.4986717 1535.853
40.0393734 13.6109056 1530.488
-4.0411751 -4.9687549 1517.070
26.2773770 47.8202663 1556.910
81.9814880 66.8288662 1680.413
24.8396541 77.3473062 1506.856
78.8747559 -3.0755225 1484.717
26.6468710 67.3051887 1496.684
-1.6635758 91.2182948 1504.817
92.6802950 96.2200029 1513.405
-2.7809562 13.8046413 1512.486
39.1102889 2.5987683 1502.162
45.8712546 48.8523444 1499.620
89.2561780 20.1589514 1569.780
-7.0787753 73.4842318 1504.415
57.8336239 78.1569571 1525.848
74.3947873 94.5381534 1551.992
9.4485060 94.2673116 1496.655
38.3881533 55.6955801 1504.315
-6.6127293 40.7847500 1559.043
73.7611126 103.1028591 1527.117
17.9282801 5.0622493 1536.839
53.3900396 20.3366755 1574.441
45.4418399 73.3952099 1509.247
12.7222182 43.8270357 1616.504
77.6123913 64.6587233 1646.669
67.8873437 81.9926225 1582.662
37.6814209 38.7582247 1542.598
32.4833796 57.4068465 1516.853
10.6336045 41.3802584 1618.410
78.1553770 40.5129908 1527.939
103.1758267 75.3131802 1492.229
-0.0172123 93.9257011 1509.484
41.0459263 99.9712554 1523.821
109.0236550 96.4530513 1507.679
21.8874990 101.9317074 1497.830
81.7513145 -2.9231695 1500.372
99.3454042 88.8938747 1501.742
94.9134218 57.8260363 1527.223
84.0662564 91.0539421 1610.124
109.9569393 69.4030961 1505.429
7.6394863 83.2413842 1507.087
34.0495309 100.4868590 1486.270
28.4740328 -9.7608886 1504.520
88.9875232 -6.1349549 1504.028
43.4492684 23.5005026 1550.172
96.5806337 25.7377867 1543.924
21.5609224 86.1965763 1496.312
87.7217712 74.6415199 1643.099
15.9316886 7.5897939 1547.601
20.5556190 24.5636674 1609.879
80.5813421 4.1914909 1514.706
88.6072139 46.5673720 1496.160
20.1747839 102.8409574 1491.287
-5.0209855 56.1619027 1500.766
90.0875346 69.9890892 1577.988
27.6607426 23.9461600 1577.866
6.9553972 65.0182821 1516.048
34.1058517 92.7306515 1488.535
89.2058332 11.1390503 1520.170
61.5390024 90.9235002 1517.024
59.4918529 36.4783816 1538.244
31.9344792 16.2839703 1560.817
4.7098450 49.7922594 1562.877
53.3536919 -1.2171213 1496.778
42.9603342 100.3160730 1504.924
16.9773379 -9.3945445 1517.950
63.2456879 49.9425281 1524.966
6.0022059 100.6571232 1503.972
33.3386119 5.3754525 1514.375
97.9236387 94.2334175 1513.962
49.4804126 35.4222640 1526.181
52.8546455 27.6743391 1571.022
-5.0341750 68.9563156 1496.880
95.7745047 82.8733316 1502.377
82.7481690 107.2289593 1503.532
42.5722881 55.3928997 1514.392
51.5053520 -4.3927146 1483.801
54.6841293 86.4875838 1534.524
70.0131909 108.8814492 1511.883
76.0295058 29.9439572 1587.988
85.6484853 26.1797903 1551.291
97.6697392 59.9019719 1523.718
20.8957098 0.5052321 1519.248
88.4729862 66.2547608 1590.906
20.1538164 77.0560286 1511.153
44.8187165 51.1533860 1518.425
68.0309262 -3.8631841 1498.178
58.6289978 82.8772579 1525.467
25.7139866 -3.9269104 1522.011
21.3003076 65.2011733 1497.728
62.4479316 79.3138901 1543.781
59.2408683 79.0786884 1548.860
63.8441639 101.3626718 1527.701
39.5953519 5.5493366 1525.488
58.4931732 23.2969240 1605.282
60.1602868 1.9332860 1503.454
1.9114440 -5.7792464 1499.739
96.2715323 46.9828447 1494.714
39.0903538 104.7204956 1488.624
101.6557304 46.8468954 1492.734
105.0268924 37.1232838 1502.136
71.3148199 53.0517592 1534.068
24.2461192 61.9676012 1493.115
98.1935393 82.2192951 1544.857
39.4108665 22.5839583 1551.701
3.8308710 -9.3380757 1513.457
14.3746430 27.5417999 1624.842
23.9683261 31.4856350 1597.986
70.1198113 109.7017905 1503.093
70.8996247 87.4279395 1612.542
96.7478936 11.5451906 1509.057
98.3181060 100.3779429 1513.373
42.5515716 23.9775342 1559.335
96.5981999 95.1618410 1516.647
41.9065579 16.1645199 1546.356
90.8175866 94.2590608 1538.461
33.8620463 107.5285164 1501.119
6.4959357 61.2849425 1508.263
92.4394683 77.7916470 1575.389
25.2709471 106.8835163 1491.833
20.8148430 27.7309045 1607.803
59.1652409 54.7402013 1518.248
26.7529195 12.0087846 1549.326
17.4847575 60.2774071 1508.729
95.9102697 71.3994509 1516.467
6.6121522 16.3705873 1573.759
36.5492713 100.5967313 1504.574
65.4099205 37.2396430 1546.641
-4.3319132 78.5934965 1510.538
22.2900263 21.6663253 1598.827
76.1188283 95.5553568 1582.666
62.2883352 22.4480367 1588.908
38.0815533 64.5434269 1499.889
106.6215866 23.3670923 1513.965
94.0356429 79.3797497 1545.206
66.5149667 63.9329539 1556.575
17.1773796 25.5647566 1611.464
77.2371694 37.3248484 1527.759
75.1846810 92.0785114 1597.508
106.7595465 64.9866935 1498.387
52.0815477 18.3104257 1569.869
76.4454821 107.6737522 1528.958
25.2439926 73.0578172 1507.565
22.0903061 102.0663570 1491.416
9.6399116 14.8480610 1564.207
44.1345382 90.2871030 1500.925
-3.0260081 43.1150788 1582.300
68.8843565 45.6053514 1517.184
15.9653080 75.8507296 1492.573
65.5993460 -7.6848511 1491.313
26.7613682 16.0195621 1553.978
83.1410134 -4.2698598 1501.872
21.2695025 37.2339109 1630.816
70.8444498 103.2475674 1516.087
103.9555270 65.6625380 1515.712
99.1280174 15.2649251 1505.829
2.7211394 79.0324802 1492.696
91.0219634 45.3216888 1500.330
22.3289261 85.5976951 1496.914
-1.9080134 81.3258636 1488.583
-5.7198598 72.1514194 1500.639
24.6421009 42.2301986 1590.441
30.2130708 53.5880265 1502.603
21.0951454 15.7748851 1562.054
83.8048238 53.9080075 1547.451
35.4662511 -5.5924372 1509.002
84.4450979 31.4639356 1568.735
99.9266260 67.1487860 1518.432
46.1240466 15.5221679 1537.757
104.7312447 12.7352638 1515.059
19.2201695 69.6486299 1483.650
96.3367378 51.8959265 1510.629
102.1819532 50.7179467 1495.384
88.9371270 83.3708389 1606.308
46.7660689 69.0966059 1527.524
15.9327528 92.6088435 1489.406
77.0372848 32.9504997 1557.608
58.5118181 77.3999484 1541.762
56.9811699 53.7657752 1500.824
64.9082567 -3.2443351 1505.016
38.2952744 94.5939577 1503.812
70.8722402 29.5239710 1598.947
72.0497879 89.0016703 1617.575
101.9334932 37.5686142 1495.838
109.8826672 -2.9751045 1515.478
57.1366042 8.0383951 1517.843
12.3675564 84.2546153 1505.852
61.6454857 75.0934569 1543.400
49.7533377 57.2697188 1511.848
71.3972383 86.9312615 1603.218
45.5282608 65.5898775 1518.721
29.3858278 82.2726451 1506.451
22.8850113 64.8671459 1498.133
45.0699241 24.3136256 1569.493
65.9014948 5.8046858 1515.366
65.9690510 108.6768581 1525.685
10.7519959 86.2096313 1515.906
39.5647257 105.8044188 1501.214
20.8036622 47.6712879 1575.772
41.9689670 9.5280402 1520.868
79.5410652 41.5403248 1506.560
26.7119340 62.2381561 1491.121
87.0795461 107.8822616 1508.976
93.8081755 19.4210003 1555.853
91.5327959 29.0430997 1538.999
2.7030215 18.1596115 1567.092
100.7991998 64.0284909 1494.948
39.8600721 31.5285579 1542.262
44.1923083 55.2737889 1502.390
98.2832157 63.1467524 1517.818
-3.5277962 87.7756079 1495.102
41.0449207 -2.0839615 1503.252
0.6568744 -4.1652459 1498.135
103.1660420 10.9878643 1513.850
60.3913352 62.6394496 1521.664
49.3752225 28.5603801 1532.891
81.8617240 30.3232149 1565.344
11.6491422 85.2267429 1500.841
5.1677096 43.6305394 1595.774
-3.8947262 106.8776215 1509.734
66.4253047 105.6924791 1510.245
56.4852030 20.1350372 1581.431
77.0702226 51.6014682 1533.997
-7.2689226 88.2718319 1511.910
71.2353067 -5.4746269 1501.750
31.1148323 78.4540884 1524.668
102.6538761 11.7575106 1511.470
109.5170704 51.2340740 1499.621
42.0342141 33.1769020 1531.316
72.8749498 -6.4039993 1497.093
99.1043105 68.9134452 1511.582
91.2494428 81.2928025 1556.601
104.7505704 105.2019218 1498.370
39.5326475 63.9007516 1506.227
-9.0300590 20.7906424 1514.349
39.6397507 -7.8658967 1488.148
108.9315627 74.0586210 1526.546
54.6685656 -9.5554745 1478.984
48.0970196 2.8355904 1500.376
28.1432877 67.9735098 1498.586
22.2442323 -5.0874047 1532.196
52.6888546 21.3399248 1556.263
74.2323138 94.1292340 1577.932
-4.5672527 78.0267880 1510.912
41.2776241 17.1847075 1546.162
106.8536079 64.6798782 1500.722
94.3077619 103.2697906 1513.920
53.5451763 40.5375573 1517.424
95.4244042 -7.5664026 1505.027
-4.5798137 -0.3586452 1508.937
89.6624644 99.3101567 1518.012
32.9560425 80.4317858 1512.044
-1.7280515 19.3834340 1536.298
104.1473564 92.3759427 1500.146
13.8418379 -9.2615675 1520.128
10.3614003 -6.9285953 1524.814
23.2121472 102.1444907 1489.344
66.9251651 79.4080454 1569.973
88.1680190 46.9285504 1500.956
14.9520326 13.5341534 1558.593
39.0940108 76.8594967 1495.935
15.9254863 9.6555981 1537.437
100.0806638 92.2636345 1513.651
-2.1782721 86.6995902 1506.084
54.2987261 2.3928148 1508.893
92.0805643 20.0592599 1534.972
72.5566401 4.6406742 1501.272
72.6624334 32.9188668 1563.051
89.5553570 77.8546149 1613.075
74.8512809 72.6723929 1713.797
47.9141089 30.5750335 1534.930
66.0321908 40.4925415 1515.921
37.1322801 98.1926650 1499.387
50.8429242 -7.1966780 1506.301
-9.2976044 70.0467883 1496.489
34.1314216 -1.0925443 1509.968
83.0657166 52.7460320 1541.175
60.6463539 87.1843896 1531.879
25.4753125 -0.3565201 1537.802
63.9951391 95.0380162 1537.010
81.1837876 3.9920236 1493.454
74.3581717 43.8768766 1501.473
-3.1426746 -0.0874256 1510.891
53.4858685 12.3895703 1527.188
63.1320570 32.2232916 1565.811
93.6906996 80.6107477 1547.330
41.8486828 89.5659122 1508.680
29.3908050 25.6783325 1591.965
97.1850477 50.6272007 1521.476
28.1837130 -6.1465343 1520.011
37.7350850 42.0853067 1532.732
56.2257791 -0.7359922 1513.249
52.2089753 92.6217944 1517.203
2.5385528 38.1774603 1590.946
96.4358540 42.6515159 1493.466
37.5199013 90.4118859 1508.448
55.8494664 11.3617214 1526.087
90.0510739 108.5290342 1509.947
81.5646677 27.8533115 1563.971
63.2692140 104.8468013 1512.176
21.9061902 29.5260864 1624.406
48.7354555 26.8942822 1549.051
65.8188237 83.8292525 1564.853
56.4777516 30.5094723 1561.733
66.6976356 85.4519467 1564.198
14.6818828 16.8287699 1555.984
68.9388928 51.3027483 1526.373
42.1837569 99.9531719 1490.173
59.7795871 83.3325606 1543.893
38.7832108 29.9532540 1557.967
1.6569089 48.9196271 1564.926
9.1434492 34.0696026 1627.608
2.9571689 90.6819687 1508.770
66.5165026 109.5292699 1511.177
70.1532239 42.7150412 1524.134
-8.3372651 14.7380619 1514.970
75.3393121 68.1212666 1657.606
69.4156640 -8.4492454 1499.460
27.7118924 -6.8979296 1515.345
56.2264132 35.3259819 1519.458
100.0337624 1.7270084 1499.681
-4.1995380 40.3426506 1580.441
2.6269938 26.4221574 1572.903
60.1177011 49.1849265 1514.151
49.5006055 15.8215728 1533.524
61.9652308 23.4285500 1597.530
34.6930682 -1.9026141 1490.962
87.3495553 41.9261293 1514.999
17.6895303 82.4151665 1497.746
55.9984183 49.8219867 1493.417
58.3716456 105.7419121 1507.352
86.4720964 48.1162036 1523.178
77.7358201 17.3299498 1581.757
75.3203586 74.9087513 1721.552
82.3082523 42.0287462 1514.646
42.4700805 20.1111487 1541.480
73.4870868 1.7718971 1501.789
44.7152671 101.9405057 1506.463
0.6859109 27.2353932 1597.665
12.5278158 79.6288005 1525.128
31.5353685 24.1613830 1574.484
73.1009148 104.1031841 1528.343
7.6972773 54.0614536 1528.846
1.9605939 105.2482462 1511.436
84.4848087 -8.5314229 1494.283
58.5529146 107.9059088 1501.270
3.9025865 -3.1788485 1505.593
51.2491019 49.5866430 1501.208
54.3456158 18.5347186 1555.640
107.6847397 97.5226675 1500.701
24.2371608 45.0674648 1564.559
2.0416838 23.1091635 1552.594
58.9533605 17.0159400 1572.365
37.0426840 81.0124443 1520.064
41.0724442 93.7449142 1509.576
-6.3120728 2.5762643 1510.855
30.0663304 42.0985865 1545.147
60.5333997 97.5168953 1523.771
-5.7777314 17.7990940 1512.944
58.3574528 26.6432727 1591.132
99.5527244 14.1997530 1510.882
5.4314999 59.6360724 1502.675
27.2049331 58.1436156 1521.830
70.7133825 72.2600724 1628.442
30.2074410 15.7865605 1561.034
103.4756336 73.3337831 1497.947
52.2111962 97.3944622 1513.381
53.4971582 62.7045896 1522.696
107.2800456 -7.6093157 1513.462
36.0828773 1.0648308 1516.719
9.8959398 38.0345417 1631.626
28.1724798 17.5128259 1569.083
11.4562865 -1.4290530 1522.087
19.9634146 67.6977307 1510.486
77.8391698 84.2881631 1695.827
56.8943508 74.8307769 1534.896
13.6876207 19.0344309 1568.703
5.6377469 1.5353368 1530.449
98.3904664 47.9330029 1507.807
21.1893364 35.5331583 1619.810
65.8549123 35.4084335 1536.643
26.9715169 16.1515069 1558.015
68.4559015 62.8591251 1573.437
29.6779532 97.7635954 1499.683
38.5344473 62.5781893 1497.989
80.7834582 88.5448509 1662.155
93.9590048 104.6989836 1510.376
18.7237450 101.6639340 1515.993
66.4147318 79.8895007 1573.536
39.8472847 91.3630961 1490.340
47.8162886 58.5914050 1498.235
44.7660164 28.6819585 1544.230
97.9984412 40.8660252 1521.193
82.3198781 64.4363866 1644.222
54.7836843 84.7816309 1530.893
6.7822165 78.8207196 1513.144
50.7918310 10.1679152 1524.965
93.3292193 33.5288333 1529.130
27.8532724 67.4226551 1512.085
23.2761412 14.0967528 1548.178
109.4592876 84.4723061 1511.526
94.0956487 83.2652183 1533.264
81.4859804 25.0429054 1587.515
-4.2042275 51.4680932 1527.781
1.5873534 6.6489744 1513.738
81.1939345 27.5667786 1583.733
99.8942479 18.5305668 1505.506
36.0007531 13.2020122 1543.004
12.9720460 71.6244480 1503.957
106.9683536 25.0433458 1505.885
2.9125746 -3.1916066 1515.022
4.3695793 1.3057712 1520.694
4.1776137 -2.0047883 1507.063
55.6018076 93.3213405 1525.231
38.1397455 85.4323965 1507.045
107.1729795 3.4698220 1515.953
-8.0515425 32.4983143 1561.571
54.3171866 85.9232182 1527.439
39.9986217 88.7987212 1492.890
8.1586290 100.2437655 1483.974
30.5534911 106.8646714 1492.227
11.6125095 0.5649165 1499.356
17.5639922 12.4533953 1551.861
74.0025834 19.4443144 1587.757
63.8565898 50.4976860 1507.068
62.1451755 73.6397534 1566.301
108.5706315 39.9792884 1504.908
-8.6882303 35.6378750 1575.384
85.7286828 25.2717346 1575.418
51.2058432 88.0449695 1535.663
12.0071275 4.6950964 1522.949
65.0518122 90.6750049 1527.383
4.7636615 28.2655413 1591.190
97.1729092 52.6163154 1519.422
46.5810002 22.0714145 1554.407
-7.8478602 66.6177464 1493.155
49.6658752 51.2813031 1516.148
9.6442217 61.1968264 1516.189
0.2572076 70.8486255 1498.373
34.3806700 101.7533175 1500.140
102.8069192 60.0474518 1514.141
5.0835445 45.1251017 1581.161
104.9616358 86.3437259 1501.398
29.2241076 70.3265714 1494.560
51.9916461 89.2788112 1520.312
98.6504682 4.9058045 1507.826
87.9540403 90.5393373 1566.810
35.6069909 89.1899773 1510.483
27.3490404 72.2583796 1496.364
44.4005316 54.6944445 1505.193
78.0673646 108.2493421 1521.683
86.0345060 52.2455135 1521.489
50.7727878 78.7952264 1517.351
-6.3879282 28.1116613 1552.978
16.4694860 45.3933454 1607.031
14.2883132 36.7943439 1639.067
40.4163508 -6.8347082 1493.901
59.4043694 107.4301601 1514.780
26.9125733 4.4445444 1505.026
93.9689351 4.9250892 1518.441
12.8351709 52.2356144 1540.502
-4.5957246 68.7504948 1504.623
90.9387196 38.9355121 1510.016
-1.6660295 69.8818550 1490.004
100.7527438 102.5080020 1495.332
105.9911643 37.0228226 1494.549
79.7167846 94.4482587 1574.811
25.5021479 95.8724883 1489.824
64.8679455 65.9269781 1552.497
34.6925810 107.7239428 1508.946
97.4436983 53.5945425 1499.629
34.9634855 14.2292793 1545.566
50.6543713 42.7736884 1528.498
78.6840622 54.9441999 1561.713
103.4864686 0.6000343 1493.714
67.8934639 18.1810981 1585.116
41.2633752 65.9674251 1499.151
54.3623894 -3.3101534 1503.777
85.5901665 -8.2802795 1508.463
105.2418536 59.6567587 1509.805
100.6187182 -1.9953644 1500.282
56.6909134 31.9379110 1553.912
66.4071529 58.9636526 1549.707
101.4136140 42.7639144 1497.432
15.8244842 86.5912274 1504.906
25.3529834 23.0743360 1587.073
6.5443245 76.7723261 1516.060
21.3540380 100.5852605 1502.077
25.2019942 14.2011983 1580.727
69.1657058 93.3994231 1547.872
-0.6532370 49.1092228 1532.503
5.7016030 108.0617277 1493.535
50.6036347 8.3754791 1516.558
36.7557311 17.2599553 1566.080
91.0657953 105.8925509 1493.553
-5.3899947 94.7447042 1501.037
48.0334802 21.4244828 1549.708
50.4329633 103.7323134 1519.404
-5.0505084 66.8113191 1505.004
69.7325202 40.9201219 1515.943
-4.8887698 28.0602180 1557.802
46.4621114 61.2889474 1503.009
64.2938416 35.7760528 1561.403
77.1037695 42.3929282 1526.516
96.2017672 101.9963953 1519.433
0.4662857 89.0292998 1483.743
72.0708827 59.2056660 1588.294
109.5364165 91.5752343 1489.485
79.2936642 14.1492138 1560.668
-5.3118066 34.5973874 1585.209
63.0517392 6.3511438 1492.916
17.3393103 44.7068286 1585.357
62.9541152 80.9099935 1552.035
87.2019699 63.7778058 1582.010
90.3052440 69.0934487 1574.500
25.2688734 76.1048284 1493.799
21.4297049 38.1346542 1623.359
3.5175382 -1.4756003 1509.298
76.0590468 91.6870374 1600.662
92.9337300 105.7332276 1511.960
71.6638974 35.1597497 1553.390
10.7209173 28.1735718 1633.483
51.3673127 108.6976360 1502.855
71.1383390 13.3389689 1549.392
75.5817593 14.6318629 1541.855
30.8308143 36.5810263 1589.775
67.7793316 16.1500442 1585.947
106.0849460 98.0246542 1485.666
11.2598220 15.8606408 1565.633
23.1088913 76.0537079 1479.768
10.4403996 -7.6325232 1517.407
2.7615352 104.7978228 1529.142
89.0893202 -8.5448018 1500.948
98.6259430 -7.0139099 1510.369
14.6402051 103.9925252 1488.091
54.7124719 26.8612291 1572.300
47.1933835 32.0922527 1525.702
85.3700834 103.6307418 1515.363
1.7721502 15.0269578 1563.127
12.5727107 8.6170472 1526.653
45.5713691 53.7627569 1508.066
44.2215382 67.0370509 1497.606
74.5813477 101.3129812 1528.128
30.0115687 11.3819921 1541.190
90.4531909 61.6848080 1554.888
20.0863997 46.7913048 1570.847
47.1320663 38.5187942 1531.695
21.5359278 2.8504028 1525.109
102.1136188 50.2343568 1501.812
48.5367774 12.0062433 1535.235
-2.3180114 55.7169349 1506.025
50.6102194 88.1279888 1510.649
77.8522285 1.2872542 1504.101
48.3893854 104.5696926 1492.684
66.3933251 101.9618268 1509.666
85.9375359 28.1935550 1555.860
67.8682558 91.8400077 1543.947
102.2557618 50.6659800 1493.771
89.4257922 46.7036010 1519.883
61.1501857 38.6312221 1523.934
3.1689991 21.9017038 1571.345
54.2624584 75.0700301 1520.234
-2.1329539 0.6990997 1517.794
14.5326373 14.6623044 1569.137
92.0923677 14.5583923 1540.265
50.9768518 11.4237147 1523.812
25.7224895 62.8373531 1499.869
9.0913331 91.3946745 1497.405
56.7395689 65.3898101 1526.841
-6.9715546 108.3857356 1505.603
86.1255730 37.8573761 1513.962
7.6243359 -5.6062683 1508.418
14.3570259 78.8911665 1492.319
78.8684186 86.3794514 1701.078
50.1203243 6.5330506 1525.042
78.2810920 101.1884724 1548.463
91.9315635 32.0111449 1514.694
-1.8781652 45.9827446 1553.455
19.2320025 48.2957502 1577.783
52.5425185 5.6003292 1518.864
5.5162289 101.0176554 1511.460
68.3529132 96.7494079 1542.238
29.1369224 15.5334408 1544.346
-3.6228530 94.7946062 1485.693
80.2698530 -8.4745485 1514.719
63.7084272 92.6554637 1534.721
5.0221692 5.5771130 1521.852
23.1965916 22.3894481 1595.744
107.4721211 61.1590065 1511.029
91.2873364 85.5051300 1557.369
35.2431964 29.0336821 1547.582
67.6516760 10.0403570 1512.336
88.2066043 14.8927116 1537.623
69.6267306 84.3787444 1594.476
library(plotly)
Le chargement a nécessité le package : ggplot2

Attachement du package : 'ggplot2'
L'objet suivant est masqué _par_ '.GlobalEnv':

    Position

Attachement du package : 'plotly'
L'objet suivant est masqué depuis 'package:ggplot2':

    last_plot
L'objet suivant est masqué depuis 'package:MASS':

    select
L'objet suivant est masqué depuis 'package:stats':

    filter
L'objet suivant est masqué depuis 'package:graphics':

    layout
library(sm)
longitude=seq(min(long),max(long),length=100)
latitude=seq(min(lat),max(lat),length=100)
RES=sm.regression(cbind(long,lat),alti,eval.points=cbind(longitude,latitude), eval.grid=TRUE,method='cv',display='none')$estimate
Est_altitude=matrix(RES,100,100)
DT=data.frame(longitude,latitude,Est_altitude)
plot_ly(DT,x=~latitude,y=~longitude,z = ~Est_altitude, type = "surface")
#%>%   layout(xaxis = list(autorange = "reversed"))
Estimated.Altitude=sm.regression(cbind(long,lat),alti,eval.points=Position, eval.grid=FALSE,method='cv',display='none')$estimate
lo=Position[,1]
la=Position[,2]
DT2=data.frame(Time,lo,la,Estimated.Altitude)
plot_ly(DT,x=~latitude,y=~longitude,z = ~Est_altitude, type = "surface")%>%
add_trace(x=~la,y=~lo,z = ~Estimated.Altitude, type = "scatter3d",mode='markers')
plot_ly(DT2,x=~Time,y=~Estimated.Altitude, type = 'scatter', mode = 'lines')
#plot_ly(DT2,x=~la,y=~lo,z = ~RES, type = "scatter3d",trace='add')
#%>%   layout(xaxis = list(autorange = "reversed"))

3.2.2 Discrimination

load('Jussac.RData')
library(knitr)
library(kableExtra)

kable(cbind(Type,LCB,LMS,LBM,LP,LM,LAM),'html',caption="Data given in Jussac.RData") %>%
  kable_styling() %>%
  scroll_box(width = "100%", height='7cm')
Data given in Jussac.RData
Type LCB LMS LBM LP LM LAM
1 129 64 95 17.5 11.2 13.8
1 154 74 76 20.0 14.2 16.5
1 170 87 71 17.9 12.3 15.9
1 188 94 73 19.5 13.3 14.8
1 161 81 55 17.1 12.1 13.0
1 164 90 58 17.5 12.7 14.7
1 203 109 65 20.7 14.0 16.8
1 178 97 57 17.3 12.8 14.3
1 212 114 65 20.5 14.3 15.5
1 221 123 62 21.2 15.2 17.0
1 183 97 52 19.3 12.9 13.5
1 212 112 65 19.7 14.2 16.0
1 220 117 70 19.8 14.3 15.6
1 216 113 72 20.5 14.4 17.7
1 216 112 75 19.6 14.0 16.4
1 205 110 68 20.8 14.1 16.4
1 228 122 78 22.5 14.2 17.8
1 218 112 65 20.3 13.9 17.0
1 190 93 78 19.7 13.2 14.0
1 212 111 73 20.5 13.7 16.6
1 201 105 70 19.8 14.3 15.9
1 196 106 67 18.5 12.6 14.2
1 158 71 71 16.7 12.5 13.3
1 255 126 86 21.4 15.0 18.0
1 234 113 83 21.3 14.8 17.0
1 205 105 70 19.0 12.4 14.9
1 186 97 62 19.0 13.2 14.2
1 241 119 87 21.0 14.7 18.3
1 220 111 88 22.5 15.4 18.0
1 242 120 85 19.9 15.3 17.6
3 199 105 73 23.4 15.0 19.1
3 227 117 77 25.0 15.3 18.6
3 228 122 82 24.7 15.0 18.5
3 232 123 83 25.3 16.8 15.5
3 231 121 78 23.5 16.5 19.6
3 215 118 74 25.7 15.7 19.0
3 184 100 69 23.3 15.8 19.7
3 175 94 73 22.2 14.8 17.0
3 239 124 77 25.0 16.8 27.0
3 203 109 70 23.3 15.0 18.7
3 226 118 72 26.0 16.0 19.4
3 226 119 77 26.5 16.8 19.3
Quant=cbind(LCB,LMS,LBM,LP,LM,LAM)
choice=combn(1:6,2)
NC=ncol(choice)
for (j in 1:NC)
{
  x=Quant[,choice[,j]]
  ju=Jussac[choice[,j]]
  print(colnames(x))
  print(Classif_NP(x,Type,ju))
}
[1] "LCB" "LMS"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Loup  Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Chien Chien Loup  Chien Chien Chien
[37] Chien Chien Chien Chien Chien Chien
Levels: Chien Jussac Loup

$Prob
          Chien         Loup
 [1,] 0.9968071  0.003192929
 [2,] 1.0396700 -0.039670038
 [3,] 0.8711861  0.128813903
 [4,] 0.9114322  0.088567841
 [5,] 0.9256400  0.074360023
 [6,] 0.6479006  0.352099411
 [7,] 0.5958009  0.404199089
 [8,] 0.6427308  0.357269248
 [9,] 0.5284826  0.471517429
[10,] 0.1008899  0.899110081
[11,] 0.7340450  0.265955012
[12,] 0.6196508  0.380349220
[13,] 0.5273338  0.472666184
[14,] 0.6415822  0.358417824
[15,] 0.6826343  0.317365693
[16,] 0.5871850  0.412814999
[17,] 0.4072262  0.592773809
[18,] 0.7127609  0.287239090
[19,] 0.9767716  0.023228367
[20,] 0.6613262  0.338673787
[21,] 0.7241818  0.275818245
[22,] 0.6002263  0.399773727
[23,] 1.2721424 -0.272142439
[24,] 0.6115807  0.388419343
[25,] 0.9283272  0.071672824
[26,] 0.7841586  0.215841352
[27,] 0.7815437  0.218456342
[28,] 0.7142495  0.285750511
[29,] 0.7817515  0.218248484
[30,] 0.7313537  0.268646280
[31,] 0.7280969  0.271903065
[32,] 0.6883376  0.311662387
[33,] 0.4915187  0.508481306
[34,] 0.5081294  0.491870592
[35,] 0.5773703  0.422629739
[36,] 0.6483357  0.351664251
[37,] 0.7237995  0.276200468
[38,] 0.8072750  0.192724995
[39,] 0.5818795  0.418120549
[40,] 0.7581497  0.241850325
[41,] 0.6250374  0.374962581
[42,] 0.5827946  0.417205426

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup      11      0    1

$Err
[1] 0.3095238

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]       [,2]
[1,] 0.9431089 0.05689111

$Auc
[1] 0.5861111

[1] "LCB" "LBM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Loup  Chien Loup  Chien Loup  Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Chien Loup  Chien Chien Loup  Chien
[37] Chien Chien Loup  Chien Chien Loup 
Levels: Chien Jussac Loup

$Prob
          Chien         Loup
 [1,] 1.7941288 -0.794128819
 [2,] 0.7788844  0.221115627
 [3,] 0.6426749  0.357325061
 [4,] 0.5500336  0.449966389
 [5,] 1.0404019 -0.040401922
 [6,] 0.9633000  0.036699981
 [7,] 0.9217973  0.078202680
 [8,] 0.9908199  0.009180114
 [9,] 0.9671192  0.032880827
[10,] 1.1715196 -0.171519632
[11,] 1.1499001 -0.149900088
[12,] 0.9671192  0.032880827
[13,] 0.6564391  0.343560892
[14,] 0.5907119  0.409288116
[15,] 0.4829629  0.517037142
[16,] 0.7948145  0.205185547
[17,] 0.3265101  0.673489942
[18,] 0.9592956  0.040704405
[19,] 0.4434532  0.556546752
[20,] 0.5615024  0.438497562
[21,] 0.6804689  0.319531134
[22,] 0.7788681  0.221131923
[23,] 0.8067945  0.193205498
[24,] 1.1761676 -0.176167625
[25,] 0.5417162  0.458283805
[26,] 0.6968803  0.303119737
[27,] 0.8959084  0.104091638
[28,] 0.9177806  0.082219445
[29,] 0.7820513  0.217948687
[30,] 0.7579148  0.242085246
[31,] 0.6762616  0.323738441
[32,] 0.4509495  0.549050524
[33,] 0.6399355  0.360064477
[34,] 0.6827756  0.317224357
[35,] 0.4315022  0.568497838
[36,] 0.5926531  0.407346880
[37,] 0.8065273  0.193472736
[38,] 0.8378498  0.162150157
[39,] 0.4297505  0.570249523
[40,] 0.7669815  0.233018465
[41,] 0.6363004  0.363699568
[42,] 0.4614977  0.538502267

$M_table
        Class
Y        Chien Jussac Loup
  Chien     27      0    3
  Jussac     0      0    0
  Loup       8      0    4

$Err
[1] 0.2619048

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.6338983 0.3661017

$Auc
[1] 0.5805556

[1] "LCB" "LP" 
$Class
 [1] Chien Loup  Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Loup  Loup  Loup  Loup  Chien Loup 
[37] Loup  Loup  Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,]  1.000000000 -3.402009e-26
 [2,]  0.134541725  8.654583e-01
 [3,]  0.998576475  1.423525e-03
 [4,]  0.958623019  4.137698e-02
 [5,]  1.000104133 -1.041328e-04
 [6,]  0.999686013  3.139871e-04
 [7,]  0.848168511  1.518315e-01
 [8,]  1.003595517 -3.595517e-03
 [9,]  0.971498030  2.850197e-02
[10,]  0.913305985  8.669402e-02
[11,]  0.988090217  1.190978e-02
[12,]  1.011132675 -1.113268e-02
[13,]  1.015954426 -1.595443e-02
[14,]  0.985735396  1.426460e-02
[15,]  1.014525335 -1.452533e-02
[16,]  0.848469751  1.515302e-01
[17,]  0.595281242  4.047188e-01
[18,]  1.000917407 -9.174067e-04
[19,]  0.939660213  6.033979e-02
[20,]  0.971498030  2.850197e-02
[21,]  0.988473935  1.152607e-02
[22,]  1.010433450 -1.043345e-02
[23,]  1.000263286 -2.632863e-04
[24,]  0.810934779  1.890652e-01
[25,]  0.921095265  7.890473e-02
[26,]  1.012330725 -1.233072e-02
[27,]  0.992210077  7.789923e-03
[28,]  0.968746819  3.125318e-02
[29,]  0.544725908  4.552741e-01
[30,]  1.073350138 -7.335014e-02
[31,]  0.092848287  9.071517e-01
[32,]  0.063628544  9.363715e-01
[33,]  0.122885364  8.771146e-01
[34,] -0.002361877  1.002362e+00
[35,]  0.545244135  4.548052e-01
[36,] -0.045940159  1.045940e+00
[37,] -0.212893305  1.212893e+00
[38,]  0.292479009  7.075210e-01
[39,] -0.058326860  1.058327e+00
[40,]  0.197557601  8.024424e-01
[41,] -0.019099470  1.019099e+00
[42,] -0.036862879  1.036863e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     29      0    1
  Jussac     0      0    0
  Loup       1      0   11

$Err
[1] 0.04761905

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.9630371 0.0369629

$Auc
[1] 0.6555556

[1] "LCB" "LM" 
$Class
 [1] Chien Loup  Chien Chien Chien Chien Chien Chien Chien Loup  Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Loup  Chien Loup  Chien Chien Loup  Loup  Chien
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
              Chien          Loup
 [1,]  1.0000000000 -3.590287e-21
 [2,]  0.0957844879  9.042155e-01
 [3,]  1.0000000002 -2.100731e-10
 [4,]  0.9998079685  1.920315e-04
 [5,]  1.0000000000 -4.829945e-12
 [6,]  0.9999999031  9.694703e-08
 [7,]  1.0071266387 -7.126639e-03
 [8,]  0.9999999452  5.481227e-08
 [9,]  0.9319331918  6.806681e-02
[10,]  0.4877520748  5.122479e-01
[11,]  1.0000005158 -5.158245e-07
[12,]  0.9775954241  2.240458e-02
[13,]  0.9395988870  6.040111e-02
[14,]  0.8977249684  1.022750e-01
[15,]  1.0026028477 -2.602848e-03
[16,]  0.9847949805  1.520502e-02
[17,]  1.0507846013 -5.078460e-02
[18,]  1.0040736371 -4.073637e-03
[19,]  0.9999946113  5.388734e-06
[20,]  1.0047089428 -4.708943e-03
[21,]  0.7036228145  2.963772e-01
[22,]  1.0000000021 -2.121634e-09
[23,]  0.9999999999  8.075307e-11
[24,]  1.0472226527 -4.722265e-02
[25,]  0.8365726205  1.634274e-01
[26,]  0.9999999996  4.329199e-10
[27,]  0.9999448330  5.516703e-05
[28,]  0.9778640777  2.213592e-02
[29,]  0.3437279543  6.562720e-01
[30,]  0.6803879730  3.196120e-01
[31,]  0.4163297477  5.836703e-01
[32,]  0.5796864845  4.203135e-01
[33,]  0.7574011078  2.425989e-01
[34,] -0.0003649075  1.000365e+00
[35,]  0.0083537536  9.916462e-01
[36,]  0.9394903785  6.050963e-02
[37,] -0.1559031242  1.155903e+00
[38,]  0.5086558818  4.913441e-01
[39,]  0.0014215707  9.985784e-01
[40,]  0.4490770128  5.509230e-01
[41,]  0.2380195946  7.619804e-01
[42,] -0.0009418316  1.000942e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     27      0    3
  Jussac     0      0    0
  Loup       4      0    8

$Err
[1] 0.1666667

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
         [,1]         [,2]
[1,] 1.002257 -0.002257412

$Auc
[1] 0.7333333

[1] "LCB" "LAM"
$Class
 [1] Chien Loup  Loup  Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Loup  Loup  Loup  Chien Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
              Chien          Loup
 [1,]   1.000107378 -1.073780e-04
 [2,] -35.064982969  3.606498e+01
 [3,]   0.485695218  5.143048e-01
 [4,]   0.977496896  2.250310e-02
 [5,]   1.000069523 -6.952280e-05
 [6,]   0.987691434  1.230857e-02
 [7,]   0.813406745  1.865933e-01
 [8,]   0.993403714  6.596286e-03
 [9,]   0.938884536  6.111546e-02
[10,]   0.896018217  1.039818e-01
[11,]   1.001407574 -1.407574e-03
[12,]   0.975308174  2.469183e-02
[13,]   0.634098528  3.659015e-01
[14,]   0.657943120  3.420569e-01
[15,]   0.950372911  4.962709e-02
[16,]   0.972855994  2.714401e-02
[17,]   0.685738029  3.142620e-01
[18,]   0.914538832  8.546117e-02
[19,]   1.000988869 -9.888690e-04
[20,]   0.973178194  2.682180e-02
[21,]   0.983060307  1.693969e-02
[22,]   1.000750338 -7.503382e-04
[23,]   0.999997845  2.155482e-06
[24,]   1.458273181 -4.582732e-01
[25,]   0.813096944  1.869031e-01
[26,]   0.982951464  1.704854e-02
[27,]   0.999256095  7.439048e-04
[28,]   0.614743986  3.852560e-01
[29,]   0.541680862  4.583191e-01
[30,]   0.999177628  8.223715e-04
[31,]  -0.012323031  1.012323e+00
[32,]   0.385451937  6.145481e-01
[33,]   0.460535104  5.394649e-01
[34,]   1.019302353 -1.930235e-02
[35,]  -0.095647511  1.095648e+00
[36,]   0.067755790  9.322442e-01
[37,]  -0.157020719  1.157021e+00
[38,]   0.999275365  1.198849e-03
[39,]  -0.003647941  1.003648e+00
[40,]   0.222875772  7.771242e-01
[41,]  -0.079138579  1.079139e+00
[42,]  -0.023749794  1.023750e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       2      0   10

$Err
[1] 0.0952381

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]       [,2]
[1,] 0.9635584 0.03644162

$Auc
[1] 0.6736111

[1] "LMS" "LBM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Loup 
[25] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Loup  Chien
[37] Chien Chien Loup  Chien Chien Loup 
Levels: Chien Jussac Loup

$Prob
          Chien        Loup
 [1,] 1.4394796 -0.43947957
 [2,] 0.9412932  0.05870681
 [3,] 0.7681495  0.23185050
 [4,] 0.6305956  0.36940441
 [5,] 1.0984759 -0.09847590
 [6,] 0.9652619  0.03473807
 [7,] 0.9126600  0.08734002
 [8,] 1.0103298 -0.01032976
 [9,] 0.9351001  0.06489987
[10,] 1.1592268 -0.15922680
[11,] 1.1505786 -0.15057861
[12,] 0.9323131  0.06768694
[13,] 0.6128769  0.38712307
[14,] 0.5801157  0.41988428
[15,] 0.5226151  0.47738492
[16,] 0.7723066  0.22769338
[17,] 0.1353025  0.86469749
[18,] 0.9323131  0.06768694
[19,] 0.6789587  0.32104128
[20,] 0.5629352  0.43706480
[21,] 0.6653289  0.33467105
[22,] 0.7972834  0.20271660
[23,] 1.1124567 -0.11245670
[24,] 0.3078150  0.69218497
[25,] 0.7703063  0.22969370
[26,] 0.6653289  0.33467105
[27,] 0.8853278  0.11467215
[28,] 0.8371818  0.16281818
[29,] 1.3792849 -0.37928491
[30,] 0.6559248  0.34407519
[31,] 0.6730716  0.32692842
[32,] 0.5068424  0.49315757
[33,] 0.5144496  0.48555044
[34,] 0.5664894  0.43351060
[35,] 0.3889101  0.61108988
[36,] 0.5094019  0.49059809
[37,] 0.8043109  0.19568910
[38,] 0.8338612  0.16613882
[39,] 0.2902466  0.70975344
[40,] 0.7421588  0.25784122
[41,] 0.6004308  0.39956921
[42,] 0.4459567  0.55404327

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       9      0    3

$Err
[1] 0.2619048

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.6363852 0.3636148

$Auc
[1] 0.5694444

[1] "LMS" "LP" 
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Loup  Chien Loup  Loup  Loup  Loup  Chien Loup 
[37] Loup  Loup  Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
              Chien          Loup
 [1,]  7.073171e-01  0.000000e+00
 [2,]  8.213317e-01  1.786683e-01
 [3,]  9.997883e-01  2.116830e-04
 [4,]  9.534227e-01  4.657729e-02
 [5,]  1.000008e+00 -7.720626e-06
 [6,]  1.000076e+00 -7.645688e-05
 [7,]  9.303569e-01  6.964305e-02
 [8,]  1.000220e+00 -2.199508e-04
 [9,]  9.938211e-01  6.178891e-03
[10,]  9.789227e-01  2.107728e-02
[11,]  9.891281e-01  1.087194e-02
[12,]  1.003492e+00 -3.491864e-03
[13,]  1.005449e+00 -5.448592e-03
[14,]  9.910253e-01  8.974663e-03
[15,]  1.003504e+00 -3.503567e-03
[16,]  9.318504e-01  6.814963e-02
[17,]  4.384134e-01  5.615085e-01
[18,]  9.960116e-01  3.988394e-03
[19,]  8.916444e-01  1.083556e-01
[20,]  9.812575e-01  1.874246e-02
[21,]  9.879072e-01  1.209282e-02
[22,]  1.001629e+00 -1.628801e-03
[23,]  1.000000e+00 -2.196221e-07
[24,]  9.886692e-01  1.133081e-02
[25,]  8.768034e-01  1.231966e-01
[26,]  1.001951e+00 -1.950877e-03
[27,]  9.983103e-01  1.689712e-03
[28,]  9.754970e-01  2.450298e-02
[29,]  4.012648e-01  5.987352e-01
[30,]  1.009789e+00 -9.789196e-03
[31,]  7.264794e-02  9.273521e-01
[32,]  1.302973e-12  1.000000e+00
[33,]  7.922616e-02  9.207738e-01
[34,] -8.258978e-03  1.008259e+00
[35,]  5.348084e-01  4.651249e-01
[36,]  1.650124e-03  9.983499e-01
[37,] -1.899749e-01  1.189975e+00
[38,]  2.093153e-01  7.906847e-01
[39,]  1.195267e-02  9.880473e-01
[40,]  2.817952e-01  7.182048e-01
[41,] -2.661182e-03  1.002661e+00
[42,] -7.817637e-03  1.007818e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       1      0   11

$Err
[1] 0.07142857

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.8624162 0.1375838

$Auc
[1] 0.7611111

[1] "LMS" "LM" 
$Class
 [1] Chien Loup  Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Loup  Chien Loup  Chien Chien Loup  Loup  Loup 
[37] Loup  Loup  Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
            Chien          Loup
 [1,]  1.01069929 -0.0106992918
 [2,]  0.20243149  0.7975685129
 [3,]  1.03903304 -0.0390330372
 [4,]  0.88527350  0.1147264983
 [5,]  1.02504741 -0.0250474141
 [6,]  0.99924296  0.0007570422
 [7,]  0.88909139  0.1109086065
 [8,]  1.02490376 -0.0249037615
 [9,]  0.88382512  0.1161748792
[10,]  0.62430414  0.3756958554
[11,]  1.00802892 -0.0080289183
[12,]  0.87914247  0.1208575348
[13,]  0.95234038  0.0476596154
[14,]  0.81700784  0.1829921648
[15,]  0.95849324  0.0415067641
[16,]  0.87294003  0.1270599691
[17,]  1.12950539 -0.1295053881
[18,]  0.99524501  0.0047549934
[19,]  0.90767345  0.0923265534
[20,]  1.03841469 -0.0384146895
[21,]  0.66283640  0.3371636016
[22,]  1.11796989 -0.1179698916
[23,]  0.94184526  0.0581547444
[24,]  0.77059645  0.2294035459
[25,]  0.62919578  0.3708042178
[26,]  1.24724022 -0.2472402166
[27,]  0.94168638  0.0583136194
[28,]  0.80929593  0.1907040664
[29,]  0.24280533  0.7571946659
[30,]  0.52344695  0.4765530515
[31,]  0.43399122  0.5660087778
[32,]  0.53197113  0.4680288681
[33,]  0.84729678  0.1527032214
[34,] -0.05142195  1.0514219525
[35,]  0.05283981  0.9471601899
[36,]  0.36298431  0.6370156877
[37,] -0.24535586  1.2453558641
[38,]  0.39492693  0.6050730672
[39,] -0.02294511  1.0229451116
[40,]  0.49977694  0.5002230628
[41,]  0.22050620  0.7794938022
[42,] -0.16475575  1.1647557466

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       2      0   10

$Err
[1] 0.0952381

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.7724708 0.2275292

$Auc
[1] 0.6416667

[1] "LMS" "LAM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Loup 
[25] Chien Chien Chien Loup  Loup  Chien Loup  Loup  Chien Chien Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
              Chien          Loup
 [1,]  1.000000e+00 -2.109889e-08
 [2,]  9.531285e-01  4.687147e-02
 [3,]  6.717125e-01  3.282875e-01
 [4,]  9.598445e-01  4.015551e-02
 [5,]  1.000071e+00 -7.064228e-05
 [6,]  1.001949e+00 -1.949123e-03
 [7,]  9.339045e-01  6.609551e-02
 [8,]  9.985148e-01  1.485209e-03
 [9,]  8.548089e-01  1.451911e-01
[10,]  7.678428e-01  2.321572e-01
[11,]  1.001966e+00 -1.965804e-03
[12,]  9.749288e-01  2.507116e-02
[13,]  6.305578e-01  3.694422e-01
[14,]  7.021250e-01  2.978750e-01
[15,]  9.828330e-01  1.716703e-02
[16,]  9.934115e-01  6.588502e-03
[17,]  7.567813e-01  2.432187e-01
[18,]  9.347093e-01  6.529070e-02
[19,]  1.002546e+00 -2.546269e-03
[20,]  9.842375e-01  1.576249e-02
[21,]  9.258548e-01  7.414517e-02
[22,]  9.939020e-01  6.098045e-03
[23,]  1.000000e+00 -4.012877e-07
[24,]  4.076343e-01  5.923657e-01
[25,]  9.319928e-01  6.800715e-02
[26,]  9.987467e-01  1.253331e-03
[27,]  9.999496e-01  5.036889e-05
[28,]  3.295119e-01  6.590382e-01
[29,]  4.972126e-01  5.027874e-01
[30,]  8.256132e-01  1.743868e-01
[31,]  1.035903e-01  8.964097e-01
[32,]  3.922032e-01  6.077968e-01
[33,]  5.883643e-01  4.116357e-01
[34,]  1.023880e+00 -2.388002e-02
[35,] -2.143617e-01  1.214362e+00
[36,]  1.511650e-01  8.488350e-01
[37,] -3.599950e-01  1.359995e+00
[38,]  8.232866e-01  1.767134e-01
[39,] -8.677953e-05  1.000087e+00
[40,]  3.213723e-01  6.786277e-01
[41,] -1.039122e-01  1.103912e+00
[42,] -1.564087e-02  1.015641e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     27      0    3
  Jussac     0      0    0
  Loup       3      0    9

$Err
[1] 0.1428571

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.6542453 0.3457547

$Auc
[1] 0.7875

[1] "LBM" "LP" 
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Loup  Loup  Loup  Loup  Chien Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,]  1.000019753 -1.975302e-05
 [2,]  0.980853685  1.914632e-02
 [3,]  1.000447584 -4.475844e-04
 [4,]  1.002423405 -2.423405e-03
 [5,]  1.000000089 -8.922781e-08
 [6,]  0.999999942  5.771260e-08
 [7,]  0.945526700  5.447330e-02
 [8,]  1.000000085 -8.491915e-08
 [9,]  0.975391525  2.460848e-02
[10,]  0.859826131  1.401739e-01
[11,]  0.999976613  2.338708e-05
[12,]  1.003043320 -3.043320e-03
[13,]  0.989718663  1.028134e-02
[14,]  0.858619108  1.413809e-01
[15,]  1.008214265 -8.214265e-03
[16,]  0.834794690  1.652053e-01
[17,]  0.029962841  9.931038e-01
[18,]  0.990913428  9.086572e-03
[19,]  1.028070078 -2.807008e-02
[20,]  0.855753065  1.442469e-01
[21,]  0.989718663  1.028134e-02
[22,]  1.001245139 -1.245139e-03
[23,]  1.000148314 -1.483141e-04
[24,]  0.987108335  1.289166e-02
[25,]  0.922798455  7.720155e-02
[26,]  1.002633329 -2.633329e-03
[27,]  1.000175568 -1.755679e-04
[28,]  1.018471071 -1.847107e-02
[29,]  0.685209489  3.147905e-01
[30,]  1.030694845 -3.069484e-02
[31,]  0.128269574  8.717304e-01
[32,]  0.022513394  9.774866e-01
[33,]  0.144506967  8.554930e-01
[34,] -0.012779433  1.012779e+00
[35,]  0.575555485  4.244445e-01
[36,] -0.003354162  1.003354e+00
[37,]  0.080760580  9.192394e-01
[38,]  0.548653198  4.513468e-01
[39,]  0.022513394  9.774866e-01
[40,]  0.058112137  9.418879e-01
[41,] -0.012248954  1.012249e+00
[42,] -0.020606376  1.020606e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     29      0    1
  Jussac     0      0    0
  Loup       2      0   10

$Err
[1] 0.07142857

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]      [,2]
[1,] 0.8792215 0.1207785

$Auc
[1] 0.6111111

[1] "LBM" "LM" 
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Loup  Loup  Chien Chien Loup  Loup 
[37] Loup  Loup  Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,]  1.006267278 -6.267278e-03
 [2,]  0.837977693  1.620223e-01
 [3,]  1.000017102 -1.710184e-05
 [4,]  0.997925637  2.074363e-03
 [5,]  1.000000003 -3.104118e-09
 [6,]  0.999999970  3.018117e-08
 [7,]  1.006374765 -6.374765e-03
 [8,]  0.999999883  1.169261e-07
 [9,]  0.941696974  5.830303e-02
[10,]  0.514238557  4.857614e-01
[11,]  1.000000012 -1.152800e-08
[12,]  0.975014745  2.498525e-02
[13,]  0.810642337  1.893577e-01
[14,]  0.676109358  3.238906e-01
[15,]  0.944273438  5.572656e-02
[16,]  0.976878679  2.312132e-02
[17,]  0.883728678  1.162713e-01
[18,]  1.009338134 -9.338134e-03
[19,]  1.035786657 -3.578666e-02
[20,]  0.996829363  3.170637e-03
[21,]  0.810642337  1.893577e-01
[22,]  1.000027833 -2.783275e-05
[23,]  0.999999293  7.065808e-07
[24,]  0.933654853  6.634515e-02
[25,]  0.761215898  2.387841e-01
[26,]  1.000010233 -1.023271e-05
[27,]  0.999925709  7.429136e-05
[28,]  1.440744196 -4.407442e-01
[29,]  1.351458374 -3.514584e-01
[30,]  0.708027304  2.919727e-01
[31,]  0.269828188  7.301718e-01
[32,]  0.309883664  6.901163e-01
[33,]  0.771335724  2.286643e-01
[34,]  0.816009272  1.839907e-01
[35,]  0.002536301  9.974637e-01
[36,]  0.029838852  9.701611e-01
[37,]  0.235212890  7.647871e-01
[38,]  0.426114402  5.738856e-01
[39,] -0.002457640  1.002458e+00
[40,]  0.427975936  5.720241e-01
[41,]  0.001168787  9.988312e-01
[42,] -0.002457640  1.002458e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     30      0    0
  Jussac     0      0    0
  Loup       2      0   10

$Err
[1] 0.04761905

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]       [,2]
[1,] 0.9682595 0.03174052

$Auc
[1] 0.7722222

[1] "LBM" "LAM"
$Class
 [1] Loup  Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Loup  Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Chien Chien Loup  Loup  Chien Chien Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,] -3.579416170  4.579416e+00
 [2,]  0.765246547  2.347535e-01
 [3,]  0.884158467  1.158415e-01
 [4,]  0.954840827  4.515917e-02
 [5,]  1.008238835 -8.238835e-03
 [6,]  0.995831740  4.168260e-03
 [7,]  0.787938023  2.120620e-01
 [8,]  1.001041265 -1.041265e-03
 [9,]  0.971226766  2.877323e-02
[10,]  0.749698151  2.503018e-01
[11,]  1.000000000 -1.142315e-45
[12,]  0.922289623  7.771038e-02
[13,]  0.930774329  6.922567e-02
[14,]  0.487317728  5.126823e-01
[15,]  0.781505021  2.184950e-01
[16,]  0.836444002  1.635560e-01
[17,]  0.522478742  4.775213e-01
[18,]  0.740526358  2.594736e-01
[19,]  0.796968174  2.030318e-01
[20,]  0.754847777  2.451522e-01
[21,]  0.894496897  1.055031e-01
[22,]  1.030437062 -3.043706e-02
[23,]  1.049693908 -4.969391e-02
[24,]  0.768927177  2.310728e-01
[25,]  0.773897253  2.261027e-01
[26,]  0.988721815  1.127819e-02
[27,]  1.015506234 -1.550623e-02
[28,]  0.765370904  2.346291e-01
[29,]  0.883021908  1.169781e-01
[30,]  0.781165533  2.188345e-01
[31,]  0.101888153  8.981118e-01
[32,]  0.334254184  6.657458e-01
[33,]  0.576304456  4.236955e-01
[34,]  1.077379764 -7.737976e-02
[35,] -0.002347413  1.002347e+00
[36,]  0.144088231  8.559118e-01
[37,] -0.140710392  1.140710e+00
[38,]  0.732115031  2.678850e-01
[39,] -2.348756299  3.348756e+00
[40,]  0.267267277  7.327327e-01
[41,] -0.014428943  1.014429e+00
[42,]  0.094590505  9.054095e-01

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       3      0    9

$Err
[1] 0.1190476

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
         [,1]     [,2]
[1,] 0.755392 0.244608

$Auc
[1] 0.7152778

[1] "LP" "LM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Loup  Chien Loup  Loup  Loup  Loup  Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,]  1.000022595 -2.259530e-05
 [2,]  1.005035517 -5.035517e-03
 [3,]  1.000076728 -7.672811e-05
 [4,]  0.993512566  6.487434e-03
 [5,]  1.000050860 -5.085980e-05
 [6,]  1.000121969 -1.219693e-04
 [7,]  0.885991413  1.140086e-01
 [8,]  1.000142292 -1.422916e-04
 [9,]  0.944521550  5.547845e-02
[10,]  0.807924675  1.920753e-01
[11,]  0.996321263  3.678737e-03
[12,]  1.033042623 -3.304262e-02
[13,]  1.034794443 -3.479444e-02
[14,]  0.949579590  5.042041e-02
[15,]  1.020030080 -2.003008e-02
[16,]  0.870812350  1.291876e-01
[17,] -0.213390647  1.213391e+00
[18,]  0.954680594  4.531941e-02
[19,]  0.987922901  1.207710e-02
[20,]  0.909319997  9.068000e-02
[21,]  1.034794443 -3.479444e-02
[22,]  0.999862706  1.372936e-04
[23,]  1.000097186 -9.718628e-05
[24,]  0.761915520  2.380845e-01
[25,]  0.787581288  2.124187e-01
[26,]  0.999371075  6.289251e-04
[27,]  0.999394667  6.053326e-04
[28,]  0.860148610  1.398514e-01
[29,]  0.374506283  6.254937e-01
[30,]  1.285507830 -2.855078e-01
[31,]  0.331165858  6.688341e-01
[32,]  0.005905740  9.940943e-01
[33,]  0.062633030  9.373670e-01
[34,] -0.005396005  1.005396e+00
[35,]  0.360209395  6.397906e-01
[36,] -0.041047550  1.041048e+00
[37,]  0.359614887  6.403851e-01
[38,]  0.711055638  2.889444e-01
[39,]  0.003254312  9.967457e-01
[40,]  0.352040844  6.479592e-01
[41,] -0.041956042  1.041956e+00
[42,] -0.048680399  1.048680e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       1      0   11

$Err
[1] 0.07142857

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]       [,2]
[1,] 0.9381193 0.06188067

$Auc
[1] 0.6972222

[1] "LP"  "LAM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Loup  Chien Chien Chien Chien Chien Chien Chien
[25] Chien Chien Chien Chien Loup  Chien Loup  Loup  Loup  Loup  Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
              Chien          Loup
 [1,]  1.000255e+00 -2.546781e-04
 [2,]  9.951940e-01  4.806018e-03
 [3,]  1.007967e+00 -7.966628e-03
 [4,]  9.901074e-01  9.892572e-03
 [5,]  1.000183e+00 -1.825095e-04
 [6,]  1.000664e+00 -6.638512e-04
 [7,]  9.202638e-01  7.973624e-02
 [8,]  1.000364e+00 -3.638306e-04
 [9,]  8.987586e-01  1.012414e-01
[10,]  8.221209e-01  1.778791e-01
[11,]  9.978787e-01  2.121330e-03
[12,]  9.953817e-01  4.618319e-03
[13,]  9.821855e-01  1.781447e-02
[14,]  1.000442e+00 -4.418637e-04
[15,]  1.013108e+00 -1.310780e-02
[16,]  8.768309e-01  1.231691e-01
[17,]  4.819352e-01  5.180648e-01
[18,]  9.914723e-01  8.527663e-03
[19,]  9.869788e-01  1.302125e-02
[20,]  9.430705e-01  5.692945e-02
[21,]  9.878487e-01  1.215130e-02
[22,]  9.999518e-01  4.818591e-05
[23,]  1.000129e+00 -1.289290e-04
[24,]  7.882186e-01  2.117814e-01
[25,]  7.955892e-01  2.044108e-01
[26,]  9.983084e-01  1.691617e-03
[27,]  9.982625e-01  1.737471e-03
[28,]  8.686287e-01  1.313713e-01
[29,]  4.802339e-01  5.197661e-01
[30,]  1.086552e+00 -8.655181e-02
[31,]  2.067179e-01  7.932821e-01
[32,]  8.261469e-02  9.173853e-01
[33,]  1.328166e-01  8.671834e-01
[34,] -3.359782e-05  1.001543e+00
[35,]  2.860779e-02  9.713922e-01
[36,] -1.051961e-02  1.010520e+00
[37,]  3.371560e-02  9.662844e-01
[38,]  9.912356e-01  8.764378e-03
[39,] -6.391207e-01  1.639121e+00
[40,]  3.150334e-01  6.849666e-01
[41,] -5.278270e-02  1.052783e+00
[42,] -5.132187e-02  1.051322e+00

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       1      0   11

$Err
[1] 0.07142857

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]       [,2]
[1,] 0.9514529 0.04854711

$Auc
[1] 0.6611111

[1] "LM"  "LAM"
$Class
 [1] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[13] Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien Chien
[25] Loup  Chien Chien Loup  Chien Chien Loup  Loup  Loup  Loup  Loup  Loup 
[37] Loup  Chien Loup  Loup  Loup  Loup 
Levels: Chien Jussac Loup

$Prob
             Chien          Loup
 [1,]  1.000000000 -8.444785e-21
 [2,]  0.946957631  5.304237e-02
 [3,]  0.999999984  1.584453e-08
 [4,]  0.999991162  8.838320e-06
 [5,]  1.000000000 -1.652703e-17
 [6,]  0.999999999  1.364058e-09
 [7,]  0.997233368  2.766632e-03
 [8,]  1.000000000  1.116284e-10
 [9,]  1.013049223 -1.304922e-02
[10,]  0.834250689  1.657493e-01
[11,]  1.000000000 -5.188620e-12
[12,]  0.994780937  5.219063e-03
[13,]  1.001479611 -1.479611e-03
[14,]  0.871425895  1.285741e-01
[15,]  1.011524881 -1.152488e-02
[16,]  0.989412666  1.058733e-02
[17,]  1.015272729 -1.527273e-02
[18,]  1.018226781 -1.822678e-02
[19,]  0.999999992  7.655264e-09
[20,]  1.035495613 -3.549561e-02
[21,]  0.965453913  3.454609e-02
[22,]  1.000000000 -1.570561e-11
[23,]  1.000000000 -7.055253e-15
[24,]  0.563149934  4.368501e-01
[25,]  0.047757173  9.522453e-01
[26,]  1.000000000 -1.376477e-10
[27,]  0.999999959  4.091530e-08
[28,]  0.447797917  5.522021e-01
[29,]  0.589745874  4.102541e-01
[30,]  0.846136437  1.538636e-01
[31,] -0.295358448  1.295358e+00
[32,]  0.334758812  6.652412e-01
[33,]  0.410713121  5.892869e-01
[34,]  0.055612685  9.443873e-01
[35,] -0.015501642  1.015502e+00
[36,]  0.200930943  7.990691e-01
[37,] -0.219924842  1.219925e+00
[38,]  1.000049336 -4.930692e-05
[39,] -2.310839328  3.310839e+00
[40,]  0.240858384  7.591416e-01
[41,]  0.014449831  9.855502e-01
[42,]  0.006676652  9.933233e-01

$M_table
        Class
Y        Chien Jussac Loup
  Chien     28      0    2
  Jussac     0      0    0
  Loup       1      0   11

$Err
[1] 0.07142857

$Class0
[1] Chien
Levels: Chien Jussac Loup

$Prob0
          [,1]        [,2]
[1,] 0.9988722 0.001127843

$Auc
[1] 0.7194444

3.2 Functional case

3.2.1 Regression

fdaplot=function(X,ylim=NULL)
{
  matplot(t(X),type='l',ylim=ylim)
}

library("fda")
Le chargement a nécessité le package : splines
Le chargement a nécessité le package : fds
Le chargement a nécessité le package : rainbow
Le chargement a nécessité le package : pcaPP
Le chargement a nécessité le package : RCurl
Le chargement a nécessité le package : deSolve

Attachement du package : 'fda'
L'objet suivant est masqué depuis 'package:graphics':

    matplot
TECATOR=read.table('npfda-spectrometric.dat')
CURVES=as.matrix(TECATOR[,-101])
Y=TECATOR[,101]
fdaplot(CURVES)

source('npfda.R')
R0=funopare.kernel.cv(Y,CURVES, CURVES,0,10,c(0,1))
R0$Mse
[1] 117.2638
plot(R0$Estimated.values,Y)
abline(0,1)

R1=funopare.kernel.cv(Y,CURVES, CURVES,1,10,c(0,1))
R1$Mse
[1] 44.27052
plot(R1$Estimated.values,Y)
abline(0,1)

R2=funopare.kernel.cv(Y,CURVES, CURVES,2,10,c(0,1))
R2$Mse
[1] 5.784178
plot(R2$Estimated.values,Y)
abline(0,1)

R3=funopare.kernel.cv(Y,CURVES, CURVES,3,10,c(0,1))
R3$Mse
[1] 9.118275
plot(R3$Estimated.values,Y)
abline(0,1)

Rpca=funopare.kernel.cv(Y,CURVES, CURVES,semimetric='pca',10)
Rpca$Mse
[1] 122.7028
plot(Rpca$Estimated.values,Y)
abline(0,1)

3.2.2 Discrimination

load("PHONEMES.RData")
par(mfrow=c(2,3))
Phon=sort(unique(PHONEME))
for (j in Phon)
{
fdaplot(CURVES[PHONEME==j,],ylim=range(CURVES))
title(j)
}

#######
Classif_NP_fun=function(X,Y,X0=NA,plot=FALSE,semimetric,...)
{
  X=as.matrix(X)
  X0=as.matrix(X0)
  n=length(Y)
  V=sort(unique(Y))
  n_V=length(V)
  Prob=matrix(NA,n,n_V)
  colnames(Prob)=V
  Class=rep(NA,n)
  test_sample=FALSE
  if (!is.na(max(X0)) & (any(dim(X)!=dim(X0)))) 
  {
    test_sample=TRUE
  }
  if (!is.na(max(X0)) & (all(dim(X)==dim(X0)))) 
  {
    if (any(X!=X0)){test_sample=TRUE}
  }
  if (test_sample)
  {
    P0=matrix(NA,nrow(X0),n_V)
    Class0=rep(NA,n)
  }
  for (v in 1:n_V)
  {
    z=as.numeric(Y==V[v])
    Prob[,v]=funopare.kernel.cv(z,X,X,semimetric=semimetric,...)$Estimated.values
    if (test_sample) {P0[,v]=funopare.kernel.cv(z,X,X0,semimetric=semimetric,...)$Predicted.values}
  }
  if (n_V==2) {Roc=ROC(Y==V[2],Prob[,2],plot)}
  Class=V[apply(Prob,1,which.max)]
  V_est=sort(unique(Class))
  if (length(V_est)==n_V){M_table=table(Y,Class)}
  else {
    M_table=matrix(0,n_V,n_V)
    M_table0=table(Y,Class)
    for (j in 1:length(V_est)) {M_table[,which(V==V_est[j])]=M_table0[,j]}
  }
  Err=1-(sum(diag(M_table))/sum(M_table))
  if (test_sample) {Class0=V[apply(P0,1,which.max)]}
  if (test_sample) {return(list(Class=Class, Prob=Prob, M_table=M_table, Err=Err, Class0=Class0,Prob0=P0,Auc=ifelse(n_V==2,Roc$AUC,NA)))}
  else {return(list(Class=Class, Prob=Prob, M_table=M_table, Err=Err,Auc=ifelse(n_V==2,Roc$AUC,NA)))}
}

learn=1:1000
RE=Classif_NP_fun(CURVES[learn,],PHONEME[learn],CURVES[-learn,],semimetric = 'mplsr',q=4)
RE$M_table
     Class
Y      AA  AO DCL  IY  SH
  AA  153  47   0   0   0
  AO   26 173   1   0   0
  DCL   0   0 199   1   0
  IY    0   0   1 199   0
  SH    0   0   0   0 200
table(PHONEME[-learn],RE$Class0)
     
       AA  AO DCL  IY  SH
  AA  152  48   0   0   0
  AO   29 171   0   0   0
  DCL   1   0 199   0   0
  IY    0   0   0 200   0
  SH    0   0   0   0 200