Exercise 1:

Using the Taylor-Young formula, find the third order Taylor expansion of the following functions about 0 .
a) $\mathrm{f}(\mathrm{x})=3 \ln (x+2)$
b) $\mathrm{g}(\mathrm{x})=e^{1+3 x}+\ln (2 x+2)$
c) $h(x)=\sqrt{1-3 x}$

Exercise 2: Let f be the function defined for any $\mathrm{x}<4$ by: $\mathrm{f}(\mathrm{x})=\frac{4}{\sqrt{4-x}}$.

1) Using the Taylor-Young formula, check that the third order Taylor expansion of f about 0 is:
$f(x)=2+\frac{1}{4} x+\frac{3}{64} x^{2}+\frac{5}{512} x^{3}+o_{x \rightarrow 0}\left(x^{3}\right)$.
2) Use 1) to deduce an approximation of the value $\frac{4}{\sqrt{4.08}}$.
3) Use 1) to deduce the third order Taylor expansions of $g(x)=\frac{4}{\sqrt{4+x}}$ and of $h(x)=\frac{1}{4+x}$ at $x=0$.

Exercise 3: Hyperbolic Functions.

Let cosh be the «hyperbolic cosine» and sinh be the « hyperbolic sine», i.e the functions from \mathbb{R} to \mathbb{R}

respectively defined by: $\cosh (\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}$ and $\sinh (\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}$.
Find the third order Taylor expansion of cosh and sinh about 0 .

Exercise 5:

1) Using Taylor expansions of common functions, find the third order T.E of the following functions at $\mathrm{x}=0$:

$$
\begin{aligned}
& \mathrm{f}_{1}(x)=\mathrm{e}^{-3 \mathrm{x}+5}, \quad \mathrm{f}_{2}(x)=\frac{1}{1-\mathrm{x}^{2}}, \quad \mathrm{f}_{3}(x)=\frac{1}{1-\mathrm{x}^{3}}, \quad \mathrm{f}_{4}(x)=e^{3 x} \ln (3-4 \mathrm{x}), \\
& \mathrm{g}(\mathrm{x})=4-2 \mathrm{x}+\mathrm{x}^{2}+2 \mathrm{x}^{3}+8 \mathrm{x}^{4}, \\
& \mathrm{t}(\mathrm{x})=\frac{\ln \left(1+x^{2}\right)}{2 \mathrm{x}+5}, \quad \mathrm{v}(\mathrm{x})=\frac{4-2 \mathrm{x}+\mathrm{x}^{2}+2 \mathrm{x}^{3}+8 \mathrm{x}^{4}}{2 \mathrm{x}+5} .
\end{aligned}
$$

2) For the function f_{2} above, give the equation of the tangent line $\left(T_{2}\right)$ of $C_{\mathrm{f}_{2}}$ at the point $\left(0 ; \mathrm{f}_{2}(0)\right)$ and a local graphical representation of $C_{\mathrm{f}_{2}}$ near this point. Do the same with f_{3}.

Exercise 6: Using appropriate common Taylor expansions, determine the following limits:

1) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$
2) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
3) $\lim _{x \rightarrow 0} \frac{\cosh (x)-1}{x^{2}}$
