Licence EG - Semester 3 - 2022-2023 QUANTITATIVE TECHNIQUES Taylor expansions (tutorial sheet)

Exercise 1:

Using the Taylor-Young formula, find the third order Taylor expansion of the following functions about 0. a) $f(x) = 3 \ln(x + 2)$ b) $g(x) = e^{1+3x} + \ln(2x + 2)$ c) $h(x) = \sqrt{1 - 3x}$

Exercise 2: Let f be the function defined for any x<4 by: $f(x) = \frac{4}{\sqrt{4-x}}$.

1) Using the Taylor-Young formula, check that the third order Taylor expansion of f about 0 is: $f(x) = 2 + \frac{1}{4}x + \frac{3}{64}x^2 + \frac{5}{512}x^3 + o_{x \to 0}(x^3).$

2) Use 1) to deduce an approximation of the value $\frac{4}{\sqrt{4.08}}$.

3) Use 1) to deduce the third order Taylor expansions of $g(x) = \frac{4}{\sqrt{4+x}}$ and of $h(x) = \frac{1}{4+x}$ at x=0.

Exercise 3: Hyperbolic Functions.

Let cosh be the « hyperbolic cosine» and sinh be the « hyperbolic sine », i.e the functions from \mathbb{R} to \mathbb{R}

respectively defined by: $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and $\sinh(x) = \frac{e^x - e^{-x}}{2}$. Find the third order Taylor expansion of \cosh and \sinh about 0.

Exercise 5:

1) Using Taylor expansions of common functions, find the third order T.E of the following functions at x=0:

 $f_{1}(x) = e^{-3x+5}, \qquad f_{2}(x) = \frac{1}{1-x^{2}}, \qquad f_{3}(x) = \frac{1}{1-x^{3}}, \qquad f_{4}(x) = e^{3x}\ln(3-4x),$ $g(x) = 4 - 2x + x^{2} + 2x^{3} + 8x^{4},$ $t(x) = \frac{\ln(1+x^{2})}{2x+5}, \qquad v(x) = \frac{4 - 2x + x^{2} + 2x^{3} + 8x^{4}}{2x+5}.$

2) For the function f_2 above, give the equation of the tangent line (T_2) of C_{f_2} at the point $(0; f_2(0))$ and a local graphical representation of C_{f_2} near this point. Do the same with f_3 .

Exercise 6: Using appropriate common Taylor expansions, determine the following limits:

1) $\lim_{x \to 0} \frac{\ln(1+x)}{x}$ 2) $\lim_{x \to 0} \frac{e^x - 1}{x}$ 3) $\lim_{x \to 0} \frac{\cosh(x) - 1}{x^2}$