1. Density estimation

1.1. Histogram

1.1.1. Real world data

1.1.1.1. Galaxies

library('sm')
Package 'sm', version 2.2-5.7: type help(sm) for summary information
library(MASS)

Attachement du package : 'MASS'
L'objet suivant est masqué depuis 'package:sm':

    muscle
data(galaxies)
?galaxies
hist(galaxies)

hist(galaxies,freq=F)

hist(galaxies,freq=F,nclass=20)

hist(galaxies,breaks=quantile(galaxies,seq(0,1,len=20)))

1.1.1.2. Faithful

data(faithful)
attach(faithful)
?faithful
hist(waiting,freq=F)

hist(waiting,freq=F,nclass=20)

hist(waiting,breaks=quantile(waiting,seq(0,1,len=20)))

hist(eruptions,freq=F)

hist(eruptions,freq=F,nclass=20)

hist(eruptions,breaks=quantile(eruptions,seq(0,1,len=30)))

1.1.2. Simulation of a mixing model

rmixing=function(n,alpha,l0,l1,p0,p1)
# Generate data from a mixing model 
{
  z=rbinom(n,1,alpha)
  f1=eval(parse(text=paste('r',l1,'(',paste(c(n,p1),collapse=','),')',sep='')))
  f0=eval(parse(text=paste('r',l0,'(',paste(c(n,p0),collapse=','),')',sep='')))
  x=z*f1+(1-z)*f0
  return(x=x)
}

dmixing=function(t,alpha,l0,l1,p0,p1)
# draw the density of the mixing model
{
  res=alpha*eval(parse(text=paste('d',l1,'(t,',paste(p1,collapse=','),')',sep='')))+(1-alpha)*eval(parse(text=paste('d',l0,'(t,',paste(p0,collapse=','),')',sep='')))
}

#Example  
n=300
alpha=0.3
l0='norm'
p0=c(8,1)
l1='norm'
p1=c(0,2)
s=seq(-10,10,0.001)

x=rmixing(n,alpha,l0,l1,p0,p1)

#### histogram
par(mfrow=c(1,3))
hist(x,freq=F,ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,freq=F,ylim=c(0,0.4),nclass=20)
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,breaks=quantile(x,seq(0,1,len=20)),ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

1.2. Moving window estimator

1.2.1. On the simulated mixing model

par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='rectangular'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

1.2.2. Come back to real world data

# Galaxies 
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='rectangular')$y))
lines(density(galaxies,kernel='rectangular'),col='blue')

# Faithful 
hist(waiting,freq=F,ylim=range(density(waiting,kernel='rectangular')$y))
lines(density(waiting,kernel='rectangular'),col='blue')

hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='rectangular')$y))
lines(density(eruptions,kernel='rectangular'),col='blue')

1.3. Kernel estimator

1.3.1. On the simulated mixing model

Effect of h value
par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='g'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

Effect of K value
par(mfrow=c(2,3))
plot(density(x,bw=1,kernel='r'),main='Uniform',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='g'),main='Gaussian',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='e'),main='Epanechnikov',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='triangular'),main='Triangular',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='b'),main='Biweight',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='cosine',bw=1),main='Cosine',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

######## Quadratic loss
# number of simulations
J=100
hs=(1:20)/20
s=seq(-10,10,0.01)

h0=5
s0=1001


QUAD_LOSS=function(s,hs,J,n,alpha,l0,l1,p0,p1,h0,s0)
{
ls= length(s)
lh=length(hs)  
EST=array(NA,c(J,ls,lh))
for (j in 1:J)
{
  x=rmixing(n,alpha,l0,l1,p0,p1)
  for (h in 1:lh) 
     {
      EST[j,,h]=sm.density(x,h=hs[h],display='none',ylim=c(0,0.4),nbins=0,eval.points=s)$estimate
     }
}
BIAS=apply(EST,c(2,3),mean)-dmixing(s,alpha,l0,l1,p0,p1)
VAR=apply(EST,c(2,3),var)
EQ=BIAS^2+VAR

nl=2
if (!is.null(s0)) nl=nl+1
  
layout(matrix(c(1:3,rep(4,3),5:(3*nl+1)),byrow=TRUE, ncol=3))
plot(hs,abs(apply(BIAS,2,mean)),type='l',ylab='|BIAS|')
plot(hs,apply(VAR,2,mean),type='l',ylab='VAR')
plot(hs,apply(EQ,2,mean),type='l',ylab='EQ')
abline(v=sm.density(x,method='normal',display="none")$h,col='blue')
abline(v=sm.density(x,method='sj',display="none")$h,col='green')
abline(v=sm.density(x,method='cv',display="none")$h,col='red')


hopt=which(apply(EQ,2,mean)==min(apply(EQ,2,mean)))
if (is.null(h0)) h0=hopt
EST2=EST[,,h0]

plot(s,EST2[1,],type='l',ylab='Estimates',main=paste('h=',hs[h0],sep=''))
for (j in 1:J) lines(s,EST2[j,])
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')

if (!is.null(h0)) 
  {
  plot(s,abs(BIAS[,h0]),type='l',ylab='|BIAS|',main=paste('h=',hs[h0],sep=''))
  plot(s,VAR[,h0],type='l',ylab='VAR',main=paste('h=',hs[h0],sep=''))
  plot(s,EQ[,h0],type='l',ylab='EQ',main=paste('h=',hs[h0],sep=''))
  }
if (!is.null(s0))
  {
  plot(hs,abs(BIAS[s0,]),type='l',ylab='|BIAS|',main=paste('s=',s[s0],sep=''))
  plot(hs,VAR[s0,],type='l',ylab='VAR',main=paste('s=',s[s0],sep=''))
  plot(hs,EQ[s0,],type='l',ylab='EQ',main=paste('s=',s[s0],sep=''))
  }
return(list(BIAS=BIAS,VAR=VAR,EQ=EQ,hopt=hs[hopt]))
}

RES=QUAD_LOSS(s,hs,J,n,alpha,l0,l1,p0,p1,NULL,NULL)

Automatic choice of h

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,kernel='e'),col='blue')
lines(density(x,bw='nrd',kernel='e'))
lines(density(x,bw='SJ',kernel='e'),col='green')
lines(density(x,bw='ucv',kernel='e'),col='orange')

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
sm.density(x,method='normal',kernel='e',add=T)
sm.density(x,method='sj',kernel='e',col='green',add=T)
sm.density(x,method='cv',kernel='e',col='orange',add=T)

1.2.2. Come back to real world data

# Galaxies 
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='e',bw='ucv')$y))
lines(density(galaxies,kernel='rectangular',bw='ucv'),col='blue')
lines(density(galaxies,kernel='e',bw='ucv'),col='orange')

# Faithful 
hist(waiting,freq=F,ylim=range(density(waiting,kernel='e',bw='ucv')$y))
lines(density(waiting,kernel='rectangular',bw='ucv'),col='blue')
lines(density(waiting,kernel='e',bw='ucv'),col='orange')

hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='e',bw='ucv')$y))
lines(density(eruptions,kernel='rectangular',bw='ucv'),col='blue')
lines(density(eruptions,kernel='e',bw='ucv'),col='orange')

## 1.4. Applications
### 1.4.1. Mode estimation

density.mode=function(x,a,b,M,bw='ucv',kernel='e',plot=T)
{
  disc=seq(a,b,length.out=M)
  dens=density(x,from=a,to=b,n=M,bw=bw,kernel=kernel)$y
  mod=disc[(order(dens))[M]]
  max=max(dens)
  if (plot) {plot(disc,dens,type='l')}
  return(list(mode=mod,max=max))
}

sm.mode=function(x,a,b,M,method='cv',plot=T)
{
  disc=seq(a,b,length.out=M)
  display="line"
  if (plot) {display="none"}
  dens=sm.density(x,eval.points=disc,method=method,nbins=0)$estimate
  mod=disc[(order(dens))[M]]
  max=max(dens)
  return(list(mode=mod,max=max))
}

plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,bw='ucv',kernel='e'),col='orange')
re=density.mode(x,-10,10,1000,bw='ucv',kernel='e',F)
segments(re$mod,0,re$mod,re$max)
re1=density.mode(x,-10,3,1000,bw='ucv',kernel='e',F)
segments(re1$mod,0,re1$mod,re1$max)

1.4.1. Clustering from density level set