Regression

Simulation

Regression 1

\[Y=10e^{-3X}+e^{-\frac{X}{2}}\epsilon, \] avec \(X \sim \mathcal{E}(1)\) et \(\epsilon \sim \mathcal{N}(0,1)\).

n=100
x=rexp(n,2)
e=rnorm(n,0,exp(-x/2))
y=10*exp(-3*x)+e
plot(function(x) 10*exp(-3*x),0,3,ylab='y')
 lines(x,y,col="red",type="p")
sm.regression(x,y,h=0.01,col="blue",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=.1,col="orange",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=1,col="green",eval.points=sort(x),add=T,nbins=0)
legend(x="topright",leg=c('h=0.01','h=0.1','h=1'), col=c("blue","orange","green"),lty=1)

plot(function(x) 10*exp(-3*x),0,3)
 lines(x,y,col="red",type="p")
 

reg3=sm.regression(x,y,method="cv",col="blue",eval.points=sort(x),add=T,nbins=0)
reg1=sm.regression(x,y,method="df",col="orange",add=T,eval.points=sort(x),nbins=0)
reg2=sm.regression(x,y,method="aicc",col="green",add=T,eval.points=sort(x),nbins=0)
legend(x="topright",leg=c('cv',"df",'aicc'), col=c("blue","orange","green"),lty=1)

plot(reg1$estimate,y[order(x)],col="orange")
lines(reg2$estimate,y[order(x)],col="green",type='p')
lines(reg3$estimate,y[order(x)],col="blue",type='p')
abline(0,1)

Erreur quadratique et Validation croisée

# Erreur quadratique
mean((reg1$estimate-y[order(x)])^2)
## [1] 0.6127917
mean((reg2$estimate-y[order(x)])^2)
## [1] 0.5210248
mean((reg3$estimate-y[order(x)])^2)
## [1] 0.511677
#Validation croisée
Compute_CV(x,y,'cv')/n
## [1] 0.5936034
Compute_CV(x,y,'df')/n
## [1] 0.6760531
Compute_CV(x,y,'aicc')/n
## [1] 0.5967966
# CV avec moyenne Y
n=length(x)
CV_y=0
for (j in 1:n) 
  {
  CV_y=CV_y+(y[j]-mean(y[-j]))^2
} 
CV_y/n
## [1] 10.1484
# Variance non corrigée e
var(e)*(n-1)/n
## [1] 0.5281708

Regression 2

\[Y=7cos(7X)+10e^{-3X}+3e^{-\frac{X}{2}}\epsilon, \] avec \(X \sim \mathcal{E}(1)\) et \(\epsilon \sim \mathcal{N}(0,1)\).

n=1000
x=rexp(n,2)
e=3*rnorm(n,0,exp(-x/2))
y=7*cos(7*x)+10*exp(-3*x)+e
plot(function(x) 10*exp(-3*x)+7*cos(7*x),0,3)
 lines(x,y,col="red",type="p")

sm.regression(x,y,h=0.01,col="blue",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=.1,col="orange",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=1,col="green",eval.points=sort(x),add=T,nbins=0)
legend(x="topright",leg=c('h=0.01','h=0.1','h=1'), col=c("blue","orange","green"),lty=1)

plot(function(x) 10*exp(-3*x)+7*cos(7*x),0,3)
 lines(x,y,col="red",type="p")

plot(function(x) 10*exp(-3*x)+7*cos(7*x),0,3)
lines(x,y,col="red",type="p")
reg3=sm.regression(x,y,method="cv",col="blue", eval.points=sort(x),add=T,nbins=0)
legend(x="topright",leg=c('cv',"df",'aicc'), col=c("blue","orange","green"),lty=1)


reg1=sm.regression(x,y,method="df",col="orange",eval.points=sort(x),add=T,nbins=0)
reg2=sm.regression(x,y,method="aicc",col="green", eval.points=sort(x),add=T,nbins=0)

plot(reg1$estimate,y[order(x)],col="orange")
lines(reg2$estimate,y[order(x)],col="green",type='p')
lines(reg3$estimate,y[order(x)],col="blue",type='p')
abline(0,1)

Erreur quadratique et Validation croisée

# Erreur quadratique
mean((reg1$estimate-y[order(x)])^2)
## [1] 22.29401
mean((reg2$estimate-y[order(x)])^2)
## [1] 5.816735
mean((reg3$estimate-y[order(x)])^2)
## [1] 7.689503
#Validation croisée
Compute_CV(x,y,'cv')/n
## [1] NaN
Compute_CV(x,y,'df')/n
## [1] 22.60085
Compute_CV(x,y,'aicc')/n
## [1] 8.912584
# CV avec moyenne Y
n=length(x)
CV_y=0
for (j in 1:n) 
  {
  CV_y=CV_y+(y[j]-mean(y[-j]))^2
} 
CV_y/n
## [1] 53.00386
# Variance non corrigée e
var(e)*(n-1)/n
## [1] 5.884625

Real world data

# load data
library(MASS)
## 
## Attachement du package : 'MASS'
## L'objet suivant est masqué depuis 'package:sm':
## 
##     muscle
data(mcycle)
head(mcycle)
##   times accel
## 1   2.4   0.0
## 2   2.6  -1.3
## 3   3.2  -2.7
## 4   3.6   0.0
## 5   4.0  -2.7
## 6   6.2  -2.7
x=mcycle$times
y=mcycle$accel
n=length(x)
# plot data
plot(x, y, xlab = "Time (ms)", ylab = "Acceleration (g)")

sm.regression(x,y,h=0.1,col="blue",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=1,col="orange",eval.points=sort(x),add=T,nbins=0)
sm.regression(x,y,h=10,col="green",eval.points=sort(x),add=T,nbins=0)
legend(x="topright",leg=c('h=0.1','h=1','h=10'), col=c("blue","orange","green"),lty=1)

plot(x,y,col="red",type="p")
reg3=sm.regression(x,y,method="cv",col="blue", eval.points=sort(x),add=T,nbins=0)
legend(x="topright",leg=c('cv',"df",'aicc'), col=c("blue","orange","green"),lty=1)

reg1=sm.regression(x,y,method="df",col="orange",eval.points=sort(x),add=T,nbins=0)
reg2=sm.regression(x,y,method="aicc",col="green", eval.points=sort(x),add=T,nbins=0)

plot(reg1$estimate,y[order(x)],col="orange")
lines(reg2$estimate,y[order(x)],col="green",type='p')
lines(reg3$estimate,y[order(x)],col="blue",type='p')
abline(0,1)

Erreur quadratique et Validation croisée

# Erreur quadratique
mean((reg1$estimate-y[order(x)])^2)
## [1] 987.5993
mean((reg2$estimate-y[order(x)])^2)
## [1] 472.0266
mean((reg3$estimate-y[order(x)])^2)
## [1] 459.8602
#Validation croisée
Compute_CV(x,y,'cv')/n
## [1] 570.7888
Compute_CV(x,y,'df')/n
## [1] 1027.242
Compute_CV(x,y,'aicc')/n
## [1] 742.0577
# CV avec moyenne Y
n=length(x)
CV_y=0
for (j in 1:n) 
  {
  CV_y=CV_y+(y[j]-mean(y[-j]))^2
} 
CV_y/n
## [1] 2352.71

Classification supervisée

Simulation

rmixing2=function(n,alpha,l0,l1,p0,p1)
# Generate data from a mixing model 
{
  z=rbinom(n,1,alpha)
  f1=eval(parse(text=paste('r',l1,'(',paste(c(n,p1),collapse=','),')',sep='')))
  f0=eval(parse(text=paste('r',l0,'(',paste(c(n,p0),collapse=','),')',sep='')))
  x=z*f1+(1-z)*f0
  return(list(x=x,z=z))
}
dmixing2=function(t,alpha,l0,l1,p0,p1)
# draw the density of the mixing model
{
  mix=alpha*eval(parse(text=paste('d',l1,'(t,',paste(p1,collapse=','),')',sep='')))+(1-alpha)*eval(parse(text=paste('d',l0,'(t,',paste(p0,collapse=','),')',sep='')))
  p1_t=eval(parse(text=paste('d',l1,'(t,',paste(p1,collapse=','),')',sep='')))/mix  
  p0_t=eval(parse(text=paste('d',l0,'(t,',paste(p0,collapse=','),')',sep='')))/mix  
  
return(list(mix=mix,p0_t=p0_t,p1_t=p1_t))
}

#Example  
n=300
alpha=0.3
l0='norm'
p0=c(4,1)
l1='norm'
p1=c(0,2)
s=seq(-10,10,0.001)

r=rmixing2(n,alpha,l0,l1,p0,p1)
x=r$x
z=r$z
p0_x=dmixing2(x,alpha,l0,l1,p0,p1)$p0_t
p1_x=dmixing2(x,alpha,l0,l1,p0,p1)$p1_t
u=sort(x)
plot(u,p0_x[order(x)],ylab='p0_x',type='l')

plot(u,p1_x[order(x)],ylab='p1_x',type='l')

Classif_NP(x,z)

## $Class
##   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0
##  [38] 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
##  [75] 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
## [112] 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
## [149] 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
## [186] 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0
## [223] 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
## [260] 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0
## [297] 0 0 0 1
## 
## $Prob
##                    0          1
##   [1,]  9.592685e-01 0.04073146
##   [2,]  9.504061e-01 0.04959385
##   [3,]  8.438781e-01 0.15612187
##   [4,]  9.642602e-01 0.03573982
##   [5,]  8.570655e-01 0.14293453
##   [6,]  8.575566e-01 0.14244343
##   [7,]  8.275411e-01 0.17245888
##   [8,]  9.507053e-01 0.04929473
##   [9,]  8.788227e-01 0.12117731
##  [10,]  7.636874e-01 0.23631258
##  [11,]  9.075007e-01 0.09249931
##  [12,]  9.089633e-01 0.09103674
##  [13,]  9.614340e-01 0.03856603
##  [14,]  9.589961e-01 0.04100387
##  [15,]  9.956135e-01 0.00438652
##  [16,]  9.465912e-01 0.05340878
##  [17,]  9.645035e-01 0.03549652
##  [18,]  9.651588e-01 0.03484115
##  [19,]  3.439932e-03 0.99656007
##  [20,]  1.214362e-01 0.87856375
##  [21,]  7.245064e-02 0.92754936
##  [22,]  9.082786e-01 0.09172140
##  [23,]  7.977479e-01 0.20225209
##  [24,]  7.785822e-01 0.22141777
##  [25,]  9.605201e-01 0.03947990
##  [26,]  4.295873e-01 0.57041268
##  [27,]  9.408537e-01 0.05914631
##  [28,]  3.845492e-01 0.61545080
##  [29,]  9.557794e-01 0.04422055
##  [30,]  4.145279e-01 0.58547211
##  [31,]  9.614699e-01 0.03853012
##  [32,]  9.618780e-01 0.03812197
##  [33,]  4.549759e-01 0.54502411
##  [34,]  9.582856e-01 0.04171437
##  [35,]  9.148615e-01 0.08513849
##  [36,] -4.270291e-03 1.00427029
##  [37,]  9.647960e-01 0.03520398
##  [38,]  3.300842e-02 0.96699158
##  [39,]  9.601192e-01 0.03988077
##  [40,]  6.890996e-01 0.31090043
##  [41,]  9.576003e-01 0.04239967
##  [42,]  9.214934e-01 0.07850661
##  [43,]  8.975923e-01 0.10240772
##  [44,] -4.539825e-03 1.00453983
##  [45,]  8.321205e-02 0.91678795
##  [46,]  9.634742e-01 0.03652584
##  [47,]  9.432226e-01 0.05677744
##  [48,]  9.540588e-01 0.04594115
##  [49,]  8.210511e-02 0.91789489
##  [50,]  7.549828e-01 0.24501720
##  [51,]  1.157342e-01 0.88426577
##  [52,]  9.610912e-01 0.03890879
##  [53,]  8.654542e-01 0.13454577
##  [54,]  4.226319e-01 0.57736806
##  [55,]  5.720647e-01 0.42793528
##  [56,]  9.458611e-01 0.05413894
##  [57,]  8.478996e-01 0.15210044
##  [58,] -4.473659e-03 1.00447366
##  [59,]  3.560025e-01 0.64399745
##  [60,]  7.704250e-01 0.22957502
##  [61,]  3.639501e-01 0.63604989
##  [62,]  6.363829e-01 0.36361705
##  [63,] -4.412458e-03 1.00441246
##  [64,]  9.216309e-01 0.07836913
##  [65,]  9.582223e-01 0.04177769
##  [66,]  9.544408e-01 0.04555925
##  [67,]  8.863356e-01 0.11366436
##  [68,]  1.513787e-01 0.84862126
##  [69,]  7.652413e-01 0.23475874
##  [70,]  7.635321e-01 0.23646789
##  [71,]  9.423004e-01 0.05769965
##  [72,]  8.480797e-01 0.15192033
##  [73,]  9.354844e-01 0.06451563
##  [74,] -4.100120e-03 1.00410012
##  [75,]  2.318916e-01 0.76810839
##  [76,]  3.541757e-01 0.64582431
##  [77,]  1.374895e-01 0.86251049
##  [78,]  9.595930e-01 0.04040702
##  [79,]  2.173160e-01 0.78268396
##  [80,]  9.622008e-01 0.03779921
##  [81,] -2.715737e-03 1.00271574
##  [82,]  9.463270e-01 0.05367300
##  [83,]  7.372254e-03 0.99262775
##  [84,]  9.640530e-01 0.03594702
##  [85,]  9.550787e-01 0.04492133
##  [86,]  2.120443e-03 0.99787956
##  [87,]  9.301288e-01 0.06987122
##  [88,]  9.570024e-01 0.04299758
##  [89,]  6.472139e-01 0.35278609
##  [90,]  9.646004e-01 0.03539957
##  [91,]  9.504972e-01 0.04950285
##  [92,] -1.544503e-03 1.00154450
##  [93,]  9.125018e-01 0.08749817
##  [94,]  8.785474e-01 0.12145262
##  [95,]  9.078789e-01 0.09212109
##  [96,]  9.379731e-01 0.06202693
##  [97,]  9.496706e-01 0.05032937
##  [98,]  7.419060e-01 0.25809397
##  [99,]  9.583921e-01 0.04160786
## [100,]  9.614694e-01 0.03853059
## [101,]  9.650037e-01 0.03499627
## [102,]  9.488693e-01 0.05113073
## [103,]  9.643036e-01 0.03569641
## [104,]  9.628562e-01 0.03714376
## [105,] -9.005520e-04 1.00090055
## [106,]  9.597481e-01 0.04025185
## [107,]  8.708869e-01 0.12911310
## [108,]  8.428380e-02 0.91571620
## [109,]  9.638657e-01 0.03613430
## [110,]  9.052446e-01 0.09475538
## [111,] -5.602213e-05 1.00005602
## [112,]  9.434348e-01 0.05656523
## [113,]  9.641437e-01 0.03585631
## [114,]  9.583602e-01 0.04163979
## [115,]  9.461832e-01 0.05381678
## [116,]  9.463392e-01 0.05366085
## [117,]  9.647136e-01 0.03528636
## [118,]  9.566882e-01 0.04331182
## [119,]  9.646257e-01 0.03537428
## [120,]  2.452609e-01 0.75473912
## [121,]  9.416952e-01 0.05830483
## [122,]  9.472808e-01 0.05271919
## [123,] -4.471488e-03 1.00447149
## [124,]  7.258712e-01 0.27412877
## [125,]  9.170123e-01 0.08298769
## [126,]  9.650975e-01 0.03490248
## [127,]  9.591554e-01 0.04084456
## [128,]  8.689467e-01 0.13105329
## [129,]  2.043831e-01 0.79561688
## [130,]  8.371563e-01 0.16284366
## [131,]  9.651528e-01 0.03484720
## [132,]  9.648025e-01 0.03519750
## [133,]  8.432694e-01 0.15673059
## [134,]  7.871874e-01 0.21281256
## [135,]  6.781030e-01 0.32189702
## [136,]  3.740546e-01 0.62594543
## [137,]  9.118521e-01 0.08814795
## [138,]  9.104122e-01 0.08958776
## [139,]  8.395435e-01 0.16045653
## [140,]  9.612513e-01 0.03874866
## [141,]  7.442361e-01 0.25576388
## [142,]  5.645910e-01 0.43540897
## [143,] -4.330633e-03 1.00433063
## [144,]  7.787743e-01 0.22122575
## [145,]  9.264123e-01 0.07358765
## [146,]  8.588059e-01 0.14119407
## [147,]  3.455587e-01 0.65444125
## [148,]  9.567169e-01 0.04328312
## [149,]  9.651204e-01 0.03487963
## [150,]  5.166066e-02 0.94833934
## [151,]  2.529480e-02 0.97470520
## [152,]  9.418814e-01 0.05811863
## [153,]  9.497567e-01 0.05024333
## [154,]  5.852637e-01 0.41473632
## [155,]  9.551964e-01 0.04480355
## [156,]  8.204263e-01 0.17957371
## [157,] -4.001976e-03 1.00400198
## [158,]  9.558176e-01 0.04418236
## [159,]  3.009279e-01 0.69907215
## [160,]  9.651581e-01 0.03484187
## [161,]  9.172910e-03 0.99082709
## [162,]  9.547924e-01 0.04520757
## [163,]  8.569413e-01 0.14305873
## [164,]  9.552690e-01 0.04473103
## [165,]  5.263796e-01 0.47362038
## [166,] -4.539452e-03 1.00453945
## [167,]  8.461786e-01 0.15382137
## [168,]  9.457712e-01 0.05422879
## [169,]  9.273442e-01 0.07265583
## [170,]  3.390878e-03 0.99660912
## [171,]  8.017187e-01 0.19828127
## [172,]  8.274759e-01 0.17252409
## [173,]  1.134828e-02 0.98865172
## [174,]  9.423587e-01 0.05764130
## [175,]  8.150465e-01 0.18495349
## [176,]  9.476330e-01 0.05236700
## [177,]  8.603717e-01 0.13962833
## [178,]  6.495939e-01 0.35040605
## [179,]  5.340080e-01 0.46599195
## [180,] -1.978334e-03 1.00197833
## [181,]  9.485258e-01 0.05147421
## [182,]  3.899011e-01 0.61009893
## [183,]  9.430816e-01 0.05691836
## [184,]  9.750814e-01 0.02491858
## [185,]  9.182552e-01 0.08174483
## [186,]  9.647995e-01 0.03520052
## [187,]  9.504851e-01 0.04951489
## [188,]  4.258095e-01 0.57419051
## [189,] -2.796427e-03 1.00279643
## [190,]  4.205154e-01 0.57948460
## [191,]  9.638511e-01 0.03614895
## [192,]  8.114872e-01 0.18851281
## [193,]  8.923376e-01 0.10766243
## [194,]  8.572259e-01 0.14277406
## [195,]  9.625956e-01 0.03740440
## [196,] -1.552772e-03 1.00155277
## [197,]  9.609484e-01 0.03905161
## [198,]  9.556277e-01 0.04437234
## [199,]  8.887699e-01 0.11123006
## [200,]  9.640090e-01 0.03599105
## [201,]  9.645095e-01 0.03549046
## [202,]  2.084810e-01 0.79151904
## [203,]  9.529468e-01 0.04705315
## [204,]  2.615835e-02 0.97384165
## [205,]  9.402793e-01 0.05972069
## [206,] -1.291132e-04 1.00012911
## [207,]  9.489883e-01 0.05101170
## [208,]  3.675350e-02 0.96324650
## [209,]  9.346990e-01 0.06530098
## [210,]  8.618218e-01 0.13817817
## [211,]  8.911051e-01 0.10889489
## [212,]  3.282661e-02 0.96717339
## [213,]  9.386071e-01 0.06139290
## [214,]  9.253166e-01 0.07468338
## [215,]  3.295057e-02 0.96704943
## [216,]  9.821045e-01 0.01789554
## [217,]  6.928533e-01 0.30714674
## [218,]  7.543903e-03 0.99245610
## [219,]  5.712240e-01 0.42877600
## [220,]  9.647669e-01 0.03523310
## [221,]  3.213619e-03 0.99678638
## [222,]  9.442811e-01 0.05571893
## [223,] -4.169206e-03 1.00416921
## [224,]  6.334910e-01 0.36650898
## [225,] -2.257084e-03 1.00225708
## [226,]  9.651326e-01 0.03486740
## [227,]  9.534649e-01 0.04653511
## [228,]  9.651459e-01 0.03485406
## [229,]  5.531765e-01 0.44682346
## [230,]  9.647561e-01 0.03524385
## [231,]  9.645261e-01 0.03547392
## [232,] -4.391473e-03 1.00439147
## [233,]  9.625791e-01 0.03742090
## [234,]  9.447120e-01 0.05528800
## [235,]  1.655559e-01 0.83444414
## [236,]  8.212702e-01 0.17872978
## [237,]  9.074916e-01 0.09250836
## [238,]  2.206974e-02 0.97793026
## [239,]  9.344992e-01 0.06550081
## [240,]  8.300510e-02 0.91699490
## [241,]  8.965057e-01 0.10349429
## [242,]  9.749836e-01 0.02501640
## [243,]  9.650600e-01 0.03493996
## [244,]  8.918215e-01 0.10817846
## [245,]  9.377468e-01 0.06225317
## [246,]  9.651444e-01 0.03485565
## [247,]  9.503016e-01 0.04969837
## [248,]  9.557988e-01 0.04420122
## [249,]  9.373396e-01 0.06266037
## [250,]  8.582584e-01 0.14174157
## [251,]  9.621571e-01 0.03784293
## [252,]  9.604935e-01 0.03950652
## [253,]  9.539909e-01 0.04600912
## [254,]  9.651588e-01 0.03484118
## [255,]  2.187419e-02 0.97812581
## [256,]  6.138908e-02 0.93861092
## [257,]  1.932314e-01 0.80676858
## [258,]  3.241012e-01 0.67589881
## [259,]  6.424150e-01 0.35758503
## [260,] -4.397578e-03 1.00439758
## [261,]  3.865215e-03 0.99613479
## [262,]  1.247963e-01 0.87520368
## [263,]  9.650183e-01 0.03498170
## [264,]  9.133417e-01 0.08665829
## [265,]  9.607173e-01 0.03928267
## [266,]  5.956304e-01 0.40436957
## [267,]  9.511265e-01 0.04887347
## [268,]  4.681878e-01 0.53181222
## [269,]  9.532573e-01 0.04674273
## [270,]  8.943123e-01 0.10568773
## [271,]  9.612386e-01 0.03876139
## [272,]  9.650952e-01 0.03490483
## [273,]  9.448450e-01 0.05515503
## [274,]  8.849204e-01 0.11507959
## [275,]  8.313452e-01 0.16865482
## [276,]  7.750632e-01 0.22493679
## [277,]  9.633292e-01 0.03667082
## [278,]  9.645715e-01 0.03542846
## [279,]  9.544073e-01 0.04559274
## [280,]  9.605154e-01 0.03948460
## [281,]  4.679620e-01 0.53203803
## [282,]  9.223337e-01 0.07766626
## [283,]  4.292612e-01 0.57073882
## [284,]  9.580561e-01 0.04194392
## [285,]  9.626269e-01 0.03737314
## [286,]  4.919136e-02 0.95080864
## [287,]  3.141122e-03 0.99685888
## [288,]  9.477935e-01 0.05220647
## [289,]  9.648590e-01 0.03514103
## [290,]  2.401034e-02 0.97598966
## [291,]  8.659551e-01 0.13404487
## [292,]  9.602476e-01 0.03975236
## [293,]  4.974877e-01 0.50251229
## [294,]  6.154547e-01 0.38454530
## [295,]  8.232517e-01 0.17674827
## [296,]  8.408046e-01 0.15919542
## [297,]  9.628099e-01 0.03719013
## [298,]  6.690560e-01 0.33094396
## [299,]  6.574190e-01 0.34258102
## [300,]  2.801036e-01 0.71989636
## 
## $M_table
##    Class
## Y     0   1
##   0 204   7
##   1  16  73
## 
## $err
## [1] 0.07666667
ROC(z,p1_x)

## $ROC
##                FPR        TPR
##   [1,] 0.995260664 1.00000000
##   [2,] 0.990521327 1.00000000
##   [3,] 0.985781991 1.00000000
##   [4,] 0.981042654 1.00000000
##   [5,] 0.976303318 1.00000000
##   [6,] 0.971563981 1.00000000
##   [7,] 0.966824645 1.00000000
##   [8,] 0.962085308 1.00000000
##   [9,] 0.957345972 1.00000000
##  [10,] 0.952606635 1.00000000
##  [11,] 0.947867299 1.00000000
##  [12,] 0.943127962 1.00000000
##  [13,] 0.938388626 1.00000000
##  [14,] 0.933649289 1.00000000
##  [15,] 0.928909953 1.00000000
##  [16,] 0.924170616 1.00000000
##  [17,] 0.919431280 1.00000000
##  [18,] 0.914691943 1.00000000
##  [19,] 0.909952607 1.00000000
##  [20,] 0.905213270 1.00000000
##  [21,] 0.905213270 0.98876404
##  [22,] 0.900473934 0.98876404
##  [23,] 0.895734597 0.98876404
##  [24,] 0.890995261 0.98876404
##  [25,] 0.886255924 0.98876404
##  [26,] 0.881516588 0.98876404
##  [27,] 0.876777251 0.98876404
##  [28,] 0.876777251 0.97752809
##  [29,] 0.872037915 0.97752809
##  [30,] 0.867298578 0.97752809
##  [31,] 0.862559242 0.97752809
##  [32,] 0.857819905 0.97752809
##  [33,] 0.853080569 0.97752809
##  [34,] 0.848341232 0.97752809
##  [35,] 0.843601896 0.97752809
##  [36,] 0.838862559 0.97752809
##  [37,] 0.834123223 0.97752809
##  [38,] 0.829383886 0.97752809
##  [39,] 0.824644550 0.97752809
##  [40,] 0.824644550 0.96629213
##  [41,] 0.819905213 0.96629213
##  [42,] 0.815165877 0.96629213
##  [43,] 0.810426540 0.96629213
##  [44,] 0.805687204 0.96629213
##  [45,] 0.800947867 0.96629213
##  [46,] 0.796208531 0.96629213
##  [47,] 0.791469194 0.96629213
##  [48,] 0.786729858 0.96629213
##  [49,] 0.781990521 0.96629213
##  [50,] 0.777251185 0.96629213
##  [51,] 0.772511848 0.96629213
##  [52,] 0.767772512 0.96629213
##  [53,] 0.763033175 0.96629213
##  [54,] 0.758293839 0.96629213
##  [55,] 0.753554502 0.96629213
##  [56,] 0.748815166 0.96629213
##  [57,] 0.744075829 0.96629213
##  [58,] 0.739336493 0.96629213
##  [59,] 0.734597156 0.96629213
##  [60,] 0.729857820 0.96629213
##  [61,] 0.725118483 0.96629213
##  [62,] 0.720379147 0.96629213
##  [63,] 0.715639810 0.96629213
##  [64,] 0.710900474 0.96629213
##  [65,] 0.706161137 0.96629213
##  [66,] 0.701421801 0.96629213
##  [67,] 0.696682464 0.96629213
##  [68,] 0.691943128 0.96629213
##  [69,] 0.687203791 0.96629213
##  [70,] 0.682464455 0.96629213
##  [71,] 0.677725118 0.96629213
##  [72,] 0.672985782 0.96629213
##  [73,] 0.668246445 0.96629213
##  [74,] 0.663507109 0.96629213
##  [75,] 0.658767773 0.96629213
##  [76,] 0.654028436 0.96629213
##  [77,] 0.649289100 0.96629213
##  [78,] 0.644549763 0.96629213
##  [79,] 0.639810427 0.96629213
##  [80,] 0.635071090 0.96629213
##  [81,] 0.630331754 0.96629213
##  [82,] 0.625592417 0.96629213
##  [83,] 0.620853081 0.96629213
##  [84,] 0.616113744 0.96629213
##  [85,] 0.611374408 0.96629213
##  [86,] 0.606635071 0.96629213
##  [87,] 0.601895735 0.96629213
##  [88,] 0.597156398 0.96629213
##  [89,] 0.592417062 0.96629213
##  [90,] 0.587677725 0.96629213
##  [91,] 0.582938389 0.96629213
##  [92,] 0.578199052 0.96629213
##  [93,] 0.573459716 0.96629213
##  [94,] 0.568720379 0.96629213
##  [95,] 0.563981043 0.96629213
##  [96,] 0.559241706 0.96629213
##  [97,] 0.554502370 0.96629213
##  [98,] 0.549763033 0.96629213
##  [99,] 0.545023697 0.96629213
## [100,] 0.540284360 0.96629213
## [101,] 0.535545024 0.96629213
## [102,] 0.530805687 0.96629213
## [103,] 0.526066351 0.96629213
## [104,] 0.521327014 0.96629213
## [105,] 0.516587678 0.96629213
## [106,] 0.511848341 0.96629213
## [107,] 0.507109005 0.96629213
## [108,] 0.502369668 0.96629213
## [109,] 0.497630332 0.96629213
## [110,] 0.492890995 0.96629213
## [111,] 0.488151659 0.96629213
## [112,] 0.483412322 0.96629213
## [113,] 0.478672986 0.96629213
## [114,] 0.478672986 0.95505618
## [115,] 0.473933649 0.95505618
## [116,] 0.469194313 0.95505618
## [117,] 0.464454976 0.95505618
## [118,] 0.459715640 0.95505618
## [119,] 0.454976303 0.95505618
## [120,] 0.450236967 0.95505618
## [121,] 0.445497630 0.95505618
## [122,] 0.440758294 0.95505618
## [123,] 0.436018957 0.95505618
## [124,] 0.431279621 0.95505618
## [125,] 0.426540284 0.95505618
## [126,] 0.421800948 0.95505618
## [127,] 0.417061611 0.95505618
## [128,] 0.412322275 0.95505618
## [129,] 0.407582938 0.95505618
## [130,] 0.402843602 0.95505618
## [131,] 0.398104265 0.95505618
## [132,] 0.393364929 0.95505618
## [133,] 0.388625592 0.95505618
## [134,] 0.383886256 0.95505618
## [135,] 0.379146919 0.95505618
## [136,] 0.374407583 0.95505618
## [137,] 0.369668246 0.95505618
## [138,] 0.364928910 0.95505618
## [139,] 0.360189573 0.95505618
## [140,] 0.355450237 0.95505618
## [141,] 0.350710900 0.95505618
## [142,] 0.345971564 0.95505618
## [143,] 0.341232227 0.95505618
## [144,] 0.336492891 0.95505618
## [145,] 0.331753555 0.95505618
## [146,] 0.331753555 0.94382022
## [147,] 0.327014218 0.94382022
## [148,] 0.322274882 0.94382022
## [149,] 0.317535545 0.94382022
## [150,] 0.312796209 0.94382022
## [151,] 0.308056872 0.94382022
## [152,] 0.303317536 0.94382022
## [153,] 0.298578199 0.94382022
## [154,] 0.293838863 0.94382022
## [155,] 0.289099526 0.94382022
## [156,] 0.284360190 0.94382022
## [157,] 0.284360190 0.93258427
## [158,] 0.279620853 0.93258427
## [159,] 0.274881517 0.93258427
## [160,] 0.270142180 0.93258427
## [161,] 0.265402844 0.93258427
## [162,] 0.260663507 0.93258427
## [163,] 0.255924171 0.93258427
## [164,] 0.251184834 0.93258427
## [165,] 0.246445498 0.93258427
## [166,] 0.241706161 0.93258427
## [167,] 0.236966825 0.93258427
## [168,] 0.232227488 0.93258427
## [169,] 0.227488152 0.93258427
## [170,] 0.222748815 0.93258427
## [171,] 0.222748815 0.92134831
## [172,] 0.218009479 0.92134831
## [173,] 0.213270142 0.92134831
## [174,] 0.208530806 0.92134831
## [175,] 0.203791469 0.92134831
## [176,] 0.199052133 0.92134831
## [177,] 0.194312796 0.92134831
## [178,] 0.189573460 0.92134831
## [179,] 0.184834123 0.92134831
## [180,] 0.180094787 0.92134831
## [181,] 0.175355450 0.92134831
## [182,] 0.170616114 0.92134831
## [183,] 0.165876777 0.92134831
## [184,] 0.161137441 0.92134831
## [185,] 0.156398104 0.92134831
## [186,] 0.151658768 0.92134831
## [187,] 0.151658768 0.91011236
## [188,] 0.146919431 0.91011236
## [189,] 0.142180095 0.91011236
## [190,] 0.137440758 0.91011236
## [191,] 0.132701422 0.91011236
## [192,] 0.132701422 0.89887640
## [193,] 0.127962085 0.89887640
## [194,] 0.123222749 0.89887640
## [195,] 0.118483412 0.89887640
## [196,] 0.113744076 0.89887640
## [197,] 0.113744076 0.88764045
## [198,] 0.109004739 0.88764045
## [199,] 0.104265403 0.88764045
## [200,] 0.099526066 0.88764045
## [201,] 0.094786730 0.88764045
## [202,] 0.090047393 0.88764045
## [203,] 0.085308057 0.88764045
## [204,] 0.080568720 0.88764045
## [205,] 0.075829384 0.88764045
## [206,] 0.075829384 0.87640449
## [207,] 0.071090047 0.87640449
## [208,] 0.066350711 0.87640449
## [209,] 0.061611374 0.87640449
## [210,] 0.056872038 0.87640449
## [211,] 0.052132701 0.87640449
## [212,] 0.047393365 0.87640449
## [213,] 0.042654028 0.87640449
## [214,] 0.042654028 0.86516854
## [215,] 0.037914692 0.86516854
## [216,] 0.037914692 0.85393258
## [217,] 0.037914692 0.84269663
## [218,] 0.037914692 0.83146067
## [219,] 0.033175355 0.83146067
## [220,] 0.033175355 0.82022472
## [221,] 0.033175355 0.80898876
## [222,] 0.028436019 0.80898876
## [223,] 0.028436019 0.79775281
## [224,] 0.028436019 0.78651685
## [225,] 0.023696682 0.78651685
## [226,] 0.018957346 0.78651685
## [227,] 0.018957346 0.77528090
## [228,] 0.018957346 0.76404494
## [229,] 0.018957346 0.75280899
## [230,] 0.018957346 0.74157303
## [231,] 0.014218009 0.74157303
## [232,] 0.014218009 0.73033708
## [233,] 0.014218009 0.71910112
## [234,] 0.009478673 0.71910112
## [235,] 0.004739336 0.71910112
## [236,] 0.004739336 0.70786517
## [237,] 0.004739336 0.69662921
## [238,] 0.004739336 0.68539326
## [239,] 0.000000000 0.68539326
## [240,] 0.000000000 0.67415730
## [241,] 0.000000000 0.66292135
## [242,] 0.000000000 0.65168539
## [243,] 0.000000000 0.64044944
## [244,] 0.000000000 0.62921348
## [245,] 0.000000000 0.61797753
## [246,] 0.000000000 0.60674157
## [247,] 0.000000000 0.59550562
## [248,] 0.000000000 0.58426966
## [249,] 0.000000000 0.57303371
## [250,] 0.000000000 0.56179775
## [251,] 0.000000000 0.55056180
## [252,] 0.000000000 0.53932584
## [253,] 0.000000000 0.52808989
## [254,] 0.000000000 0.51685393
## [255,] 0.000000000 0.50561798
## [256,] 0.000000000 0.49438202
## [257,] 0.000000000 0.48314607
## [258,] 0.000000000 0.47191011
## [259,] 0.000000000 0.46067416
## [260,] 0.000000000 0.44943820
## [261,] 0.000000000 0.43820225
## [262,] 0.000000000 0.42696629
## [263,] 0.000000000 0.41573034
## [264,] 0.000000000 0.40449438
## [265,] 0.000000000 0.39325843
## [266,] 0.000000000 0.38202247
## [267,] 0.000000000 0.37078652
## [268,] 0.000000000 0.35955056
## [269,] 0.000000000 0.34831461
## [270,] 0.000000000 0.33707865
## [271,] 0.000000000 0.32584270
## [272,] 0.000000000 0.31460674
## [273,] 0.000000000 0.30337079
## [274,] 0.000000000 0.29213483
## [275,] 0.000000000 0.28089888
## [276,] 0.000000000 0.26966292
## [277,] 0.000000000 0.25842697
## [278,] 0.000000000 0.24719101
## [279,] 0.000000000 0.23595506
## [280,] 0.000000000 0.22471910
## [281,] 0.000000000 0.21348315
## [282,] 0.000000000 0.20224719
## [283,] 0.000000000 0.19101124
## [284,] 0.000000000 0.17977528
## [285,] 0.000000000 0.16853933
## [286,] 0.000000000 0.15730337
## [287,] 0.000000000 0.14606742
## [288,] 0.000000000 0.13483146
## [289,] 0.000000000 0.12359551
## [290,] 0.000000000 0.11235955
## [291,] 0.000000000 0.10112360
## [292,] 0.000000000 0.08988764
## [293,] 0.000000000 0.07865169
## [294,] 0.000000000 0.06741573
## [295,] 0.000000000 0.05617978
## [296,] 0.000000000 0.04494382
## [297,] 0.000000000 0.03370787
## [298,] 0.000000000 0.02247191
## [299,] 0.000000000 0.01123596
## [300,] 0.000000000 0.00000000
## 
## $AUC
## [1] 0.9413707
Class_Bayes=as.numeric(p1_x>0.5)
(M_table=table(z,Class_Bayes))
##    Class_Bayes
## z     0   1
##   0 188  23
##   1  10  79
(err=1-sum(diag(M_table))/n)
## [1] 0.11

Real world data

Dopage

load('Dopage.RData')
x=hema
z=test
Classif_NP(x,z)

## $Class
##  [1] "negatif" "positif" "positif" "negatif" "positif" "positif" "negatif"
##  [8] "positif" "negatif" "negatif" "negatif" "positif" "negatif" "negatif"
## [15] "negatif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [22] "negatif" "negatif" "negatif" "positif" "positif" "negatif" "negatif"
## [29] "positif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [36] "positif" "negatif" "negatif" "positif" "negatif" "positif" "negatif"
## [43] "positif" "negatif" "positif" "positif" "negatif" "positif" "negatif"
## [50] "positif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [57] "negatif" "negatif" "negatif" "positif" "negatif" "negatif" "positif"
## [64] "positif" "negatif" "positif" "negatif" "negatif" "positif" "negatif"
## [71] "negatif" "negatif" "negatif" "negatif" "negatif"
## 
## $Prob
##            negatif       positif
##  [1,]  1.000016213 -1.621285e-05
##  [2,] -0.015399975  1.015400e+00
##  [3,]  0.131798629  8.682014e-01
##  [4,]  0.913610113  8.638989e-02
##  [5,] -0.007226770  1.007227e+00
##  [6,] -0.007434607  1.007435e+00
##  [7,]  0.822317428  1.776826e-01
##  [8,]  0.452064700  5.479353e-01
##  [9,]  1.000037060 -3.706033e-05
## [10,]  0.984403703  1.559630e-02
## [11,]  1.002079889 -2.079889e-03
## [12,]  0.063393131  9.366069e-01
## [13,]  0.766288803  2.337112e-01
## [14,]  0.998567461  1.432539e-03
## [15,]  0.981894532  1.810547e-02
## [16,]  0.870295392  1.297046e-01
## [17,]  0.990382634  9.617366e-03
## [18,]  0.923010966  7.698903e-02
## [19,]  1.002976953 -2.976953e-03
## [20,]  1.004961146 -4.961146e-03
## [21,]  0.851112730  1.488873e-01
## [22,]  0.933663838  6.633616e-02
## [23,]  0.884913425  1.150866e-01
## [24,]  1.004358978 -4.358978e-03
## [25,]  0.376311492  6.236885e-01
## [26,] -0.014582062  1.014582e+00
## [27,]  0.950271761  4.972824e-02
## [28,]  0.653951737  3.460483e-01
## [29,]  0.141132940  8.588671e-01
## [30,] -0.009277185  1.009277e+00
## [31,]  0.842818837  1.571812e-01
## [32,]  0.953618386  4.638161e-02
## [33,]  0.994551141  5.448859e-03
## [34,]  0.981510520  1.848948e-02
## [35,]  0.748594649  2.514054e-01
## [36,]  0.100112801  8.998872e-01
## [37,]  0.603680357  3.963196e-01
## [38,]  0.966419808  3.358019e-02
## [39,]  0.229610874  7.703891e-01
## [40,]  1.004793373 -4.793373e-03
## [41,]  0.331009187  6.689908e-01
## [42,]  0.999996640  3.359742e-06
## [43,] -0.007224877  1.007225e+00
## [44,]  0.913058111  8.694189e-02
## [45,]  0.022202558  9.777974e-01
## [46,]  0.019332617  9.806674e-01
## [47,]  0.938043481  6.195652e-02
## [48,]  0.010994495  9.890055e-01
## [49,]  0.936136018  6.386398e-02
## [50,]  0.076533578  9.234664e-01
## [51,]  1.003810698 -3.810698e-03
## [52,]  0.984586259  1.541374e-02
## [53,]  0.780585234  2.194148e-01
## [54,]  0.962360848  3.763915e-02
## [55,]  0.869140063  1.308599e-01
## [56,]  0.649572310  3.504277e-01
## [57,]  0.836751458  1.632485e-01
## [58,]  0.542609205  4.573908e-01
## [59,]  0.987977417  1.202258e-02
## [60,] -0.015773466  1.015773e+00
## [61,]  1.004855560 -4.855560e-03
## [62,]  0.782654530  2.173455e-01
## [63,]  0.199051930  8.009481e-01
## [64,]  0.008278253  9.917217e-01
## [65,]  1.001237547 -1.237547e-03
## [66,]  0.369378542  6.306215e-01
## [67,]  0.925590318  7.440968e-02
## [68,]  0.915724000  8.427600e-02
## [69,]  0.308905764  6.910942e-01
## [70,]  0.995717811  4.282189e-03
## [71,]  1.000003364 -3.363682e-06
## [72,]  0.710345424  2.896546e-01
## [73,]  0.522081041  4.779190e-01
## [74,]  1.001423773 -1.423773e-03
## [75,]  0.899719315  1.002807e-01
## 
## $M_table
##          Class
## Y         negatif positif
##   negatif      47       3
##   positif       5      20
## 
## $err
## [1] 0.1066667
load('Dopage.RData')
x=hema
z=test
Classif_NP(x,z)

## $Class
##  [1] "negatif" "positif" "positif" "negatif" "positif" "positif" "negatif"
##  [8] "positif" "negatif" "negatif" "negatif" "positif" "negatif" "negatif"
## [15] "negatif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [22] "negatif" "negatif" "negatif" "positif" "positif" "negatif" "negatif"
## [29] "positif" "positif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [36] "positif" "negatif" "negatif" "positif" "negatif" "positif" "negatif"
## [43] "positif" "negatif" "positif" "positif" "negatif" "positif" "negatif"
## [50] "positif" "negatif" "negatif" "negatif" "negatif" "negatif" "negatif"
## [57] "negatif" "negatif" "negatif" "positif" "negatif" "negatif" "positif"
## [64] "positif" "negatif" "positif" "negatif" "negatif" "positif" "negatif"
## [71] "negatif" "negatif" "negatif" "negatif" "negatif"
## 
## $Prob
##            negatif       positif
##  [1,]  1.000016213 -1.621285e-05
##  [2,] -0.015399975  1.015400e+00
##  [3,]  0.131798629  8.682014e-01
##  [4,]  0.913610113  8.638989e-02
##  [5,] -0.007226770  1.007227e+00
##  [6,] -0.007434607  1.007435e+00
##  [7,]  0.822317428  1.776826e-01
##  [8,]  0.452064700  5.479353e-01
##  [9,]  1.000037060 -3.706033e-05
## [10,]  0.984403703  1.559630e-02
## [11,]  1.002079889 -2.079889e-03
## [12,]  0.063393131  9.366069e-01
## [13,]  0.766288803  2.337112e-01
## [14,]  0.998567461  1.432539e-03
## [15,]  0.981894532  1.810547e-02
## [16,]  0.870295392  1.297046e-01
## [17,]  0.990382634  9.617366e-03
## [18,]  0.923010966  7.698903e-02
## [19,]  1.002976953 -2.976953e-03
## [20,]  1.004961146 -4.961146e-03
## [21,]  0.851112730  1.488873e-01
## [22,]  0.933663838  6.633616e-02
## [23,]  0.884913425  1.150866e-01
## [24,]  1.004358978 -4.358978e-03
## [25,]  0.376311492  6.236885e-01
## [26,] -0.014582062  1.014582e+00
## [27,]  0.950271761  4.972824e-02
## [28,]  0.653951737  3.460483e-01
## [29,]  0.141132940  8.588671e-01
## [30,] -0.009277185  1.009277e+00
## [31,]  0.842818837  1.571812e-01
## [32,]  0.953618386  4.638161e-02
## [33,]  0.994551141  5.448859e-03
## [34,]  0.981510520  1.848948e-02
## [35,]  0.748594649  2.514054e-01
## [36,]  0.100112801  8.998872e-01
## [37,]  0.603680357  3.963196e-01
## [38,]  0.966419808  3.358019e-02
## [39,]  0.229610874  7.703891e-01
## [40,]  1.004793373 -4.793373e-03
## [41,]  0.331009187  6.689908e-01
## [42,]  0.999996640  3.359742e-06
## [43,] -0.007224877  1.007225e+00
## [44,]  0.913058111  8.694189e-02
## [45,]  0.022202558  9.777974e-01
## [46,]  0.019332617  9.806674e-01
## [47,]  0.938043481  6.195652e-02
## [48,]  0.010994495  9.890055e-01
## [49,]  0.936136018  6.386398e-02
## [50,]  0.076533578  9.234664e-01
## [51,]  1.003810698 -3.810698e-03
## [52,]  0.984586259  1.541374e-02
## [53,]  0.780585234  2.194148e-01
## [54,]  0.962360848  3.763915e-02
## [55,]  0.869140063  1.308599e-01
## [56,]  0.649572310  3.504277e-01
## [57,]  0.836751458  1.632485e-01
## [58,]  0.542609205  4.573908e-01
## [59,]  0.987977417  1.202258e-02
## [60,] -0.015773466  1.015773e+00
## [61,]  1.004855560 -4.855560e-03
## [62,]  0.782654530  2.173455e-01
## [63,]  0.199051930  8.009481e-01
## [64,]  0.008278253  9.917217e-01
## [65,]  1.001237547 -1.237547e-03
## [66,]  0.369378542  6.306215e-01
## [67,]  0.925590318  7.440968e-02
## [68,]  0.915724000  8.427600e-02
## [69,]  0.308905764  6.910942e-01
## [70,]  0.995717811  4.282189e-03
## [71,]  1.000003364 -3.363682e-06
## [72,]  0.710345424  2.896546e-01
## [73,]  0.522081041  4.779190e-01
## [74,]  1.001423773 -1.423773e-03
## [75,]  0.899719315  1.002807e-01
## 
## $M_table
##          Class
## Y         negatif positif
##   negatif      47       3
##   positif       5      20
## 
## $err
## [1] 0.1066667

Iris

data('iris')
attach(iris)
for (j in colnames(iris)[1:4])
{
print(j)
x=get(j)
z=Species
r=Classif_NP(x,z)
print(r$M_table)
print(r$err)
}
## [1] "Sepal.Length"
##             Class
## Y            setosa versicolor virginica
##   setosa         45          5         0
##   versicolor      6         28        16
##   virginica       1         10        39
## [1] 0.2533333
## [1] "Sepal.Width"
##             Class
## Y            setosa versicolor virginica
##   setosa         38          2        10
##   versicolor      5         27        18
##   virginica      13         21        16
## [1] 0.46
## [1] "Petal.Length"
##             Class
## Y            setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         46         4
##   virginica       0          3        47
## [1] 0.04666667
## [1] "Petal.Width"
##             Class
## Y            setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         48         2
##   virginica       0          4        46
## [1] 0.04